/BBDM

BBDM: Image-to-image Translation with Brownian Bridge Diffusion Models

Primary LanguagePythonMIT LicenseMIT

Brownian Bridge Diffusion Models


https://arxiv.org/abs/2205.07680

Bo Li, Kai-Tao Xue, Bin Liu, Yu-Kun Lai

img

Requirements

cond env create -f environment.yml
conda activate BBDM

Data preparation

Paired translation task

For datasets that have paired image data, the path should be formatted as:

your_dataset_path/train/A  # training reference
your_dataset_path/train/B  # training ground truth
your_dataset_path/val/A  # validating reference
your_dataset_path/val/B  # validating ground truth
your_dataset_path/test/A  # testing reference
your_dataset_path/test/B  # testing ground truth

After that, the dataset configuration should be specified in config file as:

dataset_name: 'your_dataset_name'
dataset_type: 'custom_aligned'
dataset_config:
  dataset_path: 'your_dataset_path'

Colorization and Inpainting

For colorization and inpainting tasks, the references may be generated from ground truth. The path should be formatted as:

your_dataset_path/train  # training ground truth
your_dataset_path/val  # validating ground truth
your_dataset_path/test  # testing ground truth

Colorization

For generalization, the gray image and ground truth are all in RGB format in colorization task. You can use our dataset type or implement your own.

dataset_name: 'your_dataset_name'
dataset_type: 'custom_colorization or implement_your_dataset_type'
dataset_config:
  dataset_path: 'your_dataset_path'

Inpainting

We randomly mask 25%-50% of the ground truth. You can use our dataset type or implement your own.

dataset_name: 'your_dataset_name'
dataset_type: 'custom_inpainting or implement_your_dataset_type'
dataset_config:
  dataset_path: 'your_dataset_path'

Train and Test

Specify your configuration file

Modify the configuration file based on our templates in configs/Template-*.yaml Don't forget to specify your VQGAN checkpoint path and dataset path.

Specity your training and tesing shell

Specity your shell file based on our templates in configs/Template-shell.sh

If you wish to train from the beginning

python3 main.py --config configs/Template_LBBDM_f4.yaml --train --sample_at_start --save_top --gpu_ids 0 

If you wish to continue training, specify the model checkpoint path and optimizer checkpoint path in the train part.

python3 main.py --config configs/Template_LBBDM_f4.yaml --train --sample_at_start --save_top --gpu_ids 0 
--resume_model path/to/model_ckpt --resume_optim path/to/optim_ckpt

If you wish to sample the whole test dataset to evaluate metrics

python3 main.py --config configs/Template_LBBDM_f4.yaml --sample_to_eval --gpu_ids 0 --resume_model path/to/model_ckpt

Note that optimizer checkpoint is not needed in test and specifying checkpoint path in commandline has higher priority than specifying in configuration file.

Run

sh shell/your_shell.sh

Pretrained Models

For simplicity, we re-trained all of the models based on the same VQGAN model from LDM.

The pre-trained VQGAN models provided by LDM can be directly used for all tasks.
https://github.com/CompVis/latent-diffusion#bibtex

All of our models can be found here. https://pan.baidu.com/s/1xmuAHrBt9rhj7vMu5HIhvA?pwd=hubb

Acknowledgement

Our code is implemented based on Latent Diffusion Model and VQGAN

Latent Diffusion Models
VQGAN

Citation

@inproceedings{li2023bbdm,
  title={BBDM: Image-to-image translation with Brownian bridge diffusion models},
  author={Li, Bo and Xue, Kaitao and Liu, Bin and Lai, Yu-Kun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={1952--1961},
  year={2023}
}