Internship project in Bennett University under Leadinginadi.ai
Problem Statement :-
To perform Semantic Segmentation of Stuff classes.The COCO Stuff Segmentation Task is designed to push the state of the art in semantic segmentation of stuff classes.
pip install tensorflow-gpu
pip install tqdm
pip install keras
pip install keras-segmentation
You need to make two folders
Images Folder - For all the training images
Annotations Folder - For the corresponding ground truth segmentation images
The filenames of the annotation images should be same as the filenames of the RGB images.
python -m keras_segmentation verify_dataset \
--images_path="dataset1/images_prepped_train/" \
--segs_path="dataset1/annotations_prepped_train/" \
--n_classes=50
python -m keras_segmentation visualize_dataset \
--images_path="dataset1/images_prepped_train/" \
--segs_path="dataset1/annotations_prepped_train/" \
--n_classes=50
python -m keras_segmentation train \
--checkpoints_path="path_to_checkpoints" \
--train_images="dataset1/images_prepped_train/" \
--train_annotations="dataset1/annotations_prepped_train/" \
--val_images="dataset1/images_prepped_test/" \
--val_annotations="dataset1/annotations_prepped_test/" \
--n_classes=300 \
--input_height=320 \
--input_width=640 \
--model_name="pspnet"
python -m keras_segmentation predict \
--checkpoints_path="path_to_checkpoints" \
--input_path="dataset1/images_prepped_test/" \
--output_path="path_to_predictions"