LeadingIndiaAI/Wake-UP-word-detection
Wake-up-word(WUW)system is an emerging development in recent times. Voice interaction with systems have made life ease and aids in multi-tasking. Apple, Google, Microsoft, Amazon have developed a custom wake-word engine, which are addressed by words such as ‘Hey Siri’. ‘Ok Google’, ‘Cortana’, ‘Alexa’. Our project focuses initially only detection and response to a customized wake-up command. The wake-up command used is “GOLUMOLU”. A wake-up-word detection system search for specific word and reads the word, where it rejects all other words, phrases and sounds. WUW system needs only less memory space, low computational cost and high precision. Artificial Neural Networks(ANN) have reduced the complexity, computational time, latency, thus the efficiency of system has improved. Deep learning has improved the efficiency of automatic speech recognition(SR), where wake word detection is a subset of SR but unlike keyword spotting and voice recognition. A deep learning RNN model is used for the training of the network. RNN are specifically used in case of temporal sequence data and has the ability to process data of different length but of same dimension. For training a model, labelled dataset is needed. We generated three forms of data: golumolu, negative and background. Such that, the model learns circumspectly and attentively detects when specific word found. To start communication with system, the wake word should be delivered. The main task of WUW detection system is to detect the speech, to identify WUW words among spoken words, to check whether the word spoken in altering context.
Jupyter Notebook
Issues
- 0
Multiple Keywords
#1 opened by hamzakhalil798