/ru-clip-tiny

Primary LanguageJupyter NotebookMIT LicenseMIT

RuCLIPtiny

Zero-shot image classification model for Russian language


RuCLIPtiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts). Our model is based on ConvNeXt-tiny and DistilRuBert-tiny, and is supported by extensive research zero-shot transfer, computer vision, natural language processing, and multimodal learning.

Examples

Open In Colab Evaluate & Simple usage

Open In Colab Finetuning

Open In Colab ONNX conversion and speed testing

Usage

Install rucliptiny module and requirements first. Use this trick

!gdown -O ru-clip-tiny.pkl https://drive.google.com/uc?id=1-3g3J90pZmHo9jbBzsEmr7ei5zm3VXOL
!pip install git+https://github.com/cene555/ru-clip-tiny.git

Example in 3 steps

Download CLIP image from repo

!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Import libraries
from rucliptiny.predictor import Predictor
from rucliptiny import RuCLIPtiny
import torch

torch.manual_seed(1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  1. Load model
model = RuCLIPtiny()
model.load_state_dict(torch.load('ru-clip-tiny.pkl'))
model = model.to(device).eval()
  1. Use predictor to get probabilities
predictor = Predictor()

classes = ['диаграмма', 'собака', 'кошка']
text_probs = predictor(model=model, images_path=["CLIP.png"],
                       classes=classes, get_probs=True,
                       max_len=77, device=device)

Cosine similarity Visualization Example

Speed Tesing

NVIDIA Tesla K80 (Google Colab session)

TORCH batch encode_image encode_text total
RuCLIPtiny 2 0.011 0.004 0.015
RuCLIPtiny 8 0.011 0.004 0.015
RuCLIPtiny 16 0.012 0.005 0.017
RuCLIPtiny 32 0.014 0.005 0.019
RuCLIPtiny 64 0.013 0.006 0.019