torch==1.2.0
训练所需的pth可以在百度网盘下载。
包括Efficient-d0到d7所有权重。
链接: https://pan.baidu.com/s/1Kvv526YYSDJEf9BzWfIb3Q 提取码: f9g3
1、训练前一定要注意权重文件与Efficientdet版本的对齐!
2、注意修改训练用到的voc_classes.txt文件!
3、注意修改预测用到的voc_classes.txt文件!
1、本文使用VOC格式进行训练。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
4、在训练前利用voc2efficientdet.py文件生成对应的txt。
5、再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
6、就会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置。
7、在训练前需要修改model_data里面的voc_classes.txt文件,需要将classes改成你自己的classes。
8、修改train.py文件下的phi可以修改efficientdet的版本,训练前注意权重文件与Efficientdet版本的对齐。
9、运行train.py即可开始训练。
更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://github.com/Cartucho/mAP