This is a PyTorch implementation of 3DRefTR proposed by our paper "A Unified Framework for 3D Point Cloud Visual Grounding".
- (1) Install environment with
environment.yml
file:conda env create -f environment.yml --name 3dreftr
- or you can install manually:
conda create -n 3dreftr python=3.7 conda activate 3dreftr conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c nvidia pip install numpy ipython psutil traitlets transformers termcolor ipdb scipy tensorboardX h5py wandb plyfile tabulate
- or you can install manually:
- (2) Install spacy for text parsing
pip install spacy # 3.3.0 pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.3.0/en_core_web_sm-3.3.0.tar.gz
- (3) Compile pointnet++
cd ~/3DRefTR sh init.sh
- (4) Install segmentator from https://github.com/Karbo123/segmentator
We showing visualization via wandb for superpoints, kps points, bad case analyse, predict/ground_truth masks and box.
- superpoints in 'src/joint_det_dataset.py' line 71
self.visualization_superpoint = False
- others in 'src/groungd_evaluation.py' line 66 ~ 70
self.visualization_pred = False
self.visualization_gt = False
self.bad_case_visualization = False
self.kps_points_visualization = False
self.bad_case_threshold = 0.15
The final required files are as follows:
├── [DATA_ROOT]
│ ├── [1] train_v3scans.pkl # Packaged ScanNet training set
│ ├── [2] val_v3scans.pkl # Packaged ScanNet validation set
│ ├── [3] ScanRefer/ # ScanRefer utterance data
│ │ │ ├── ScanRefer_filtered_train.json
│ │ │ ├── ScanRefer_filtered_val.json
│ │ │ └── ...
│ ├── [4] ReferIt3D/ # NR3D/SR3D utterance data
│ │ │ ├── nr3d.csv
│ │ │ ├── sr3d.csv
│ │ │ └── ...
│ ├── [5] group_free_pred_bboxes/ # detected boxes (optional)
│ ├── [6] gf_detector_l6o256.pth # pointnet++ checkpoint (optional)
│ ├── [7] roberta-base/ # roberta pretrained language model
│ ├── [8] checkpoints/ # 3dreftr pretrained models
- [1] [2] Prepare ScanNet Point Clouds Data
- 1) Download ScanNet v2 data. Follow the ScanNet instructions to apply for dataset permission, and you will get the official download script
download-scannet.py
. Then use the following command to download the necessary files:wherepython2 download-scannet.py -o [SCANNET_PATH] --type _vh_clean_2.ply python2 download-scannet.py -o [SCANNET_PATH] --type _vh_clean_2.labels.ply python2 download-scannet.py -o [SCANNET_PATH] --type .aggregation.json python2 download-scannet.py -o [SCANNET_PATH] --type _vh_clean_2.0.010000.segs.json python2 download-scannet.py -o [SCANNET_PATH] --type .txt
[SCANNET_PATH]
is the output folder. The scannet dataset structure should look like below:├── [SCANNET_PATH] │ ├── scans │ │ ├── scene0000_00 │ │ │ ├── scene0000_00.txt │ │ │ ├── scene0000_00.aggregation.json │ │ │ ├── scene0000_00_vh_clean_2.ply │ │ │ ├── scene0000_00_vh_clean_2.labels.ply │ │ │ ├── scene0000_00_vh_clean_2.0.010000.segs.json │ │ ├── scene.......
- 2) Package the above files into two .pkl files(
train_v3scans.pkl
andval_v3scans.pkl
):python Pack_scan_files.py --scannet_data [SCANNET_PATH] --data_root [DATA_ROOT]
- 1) Download ScanNet v2 data. Follow the ScanNet instructions to apply for dataset permission, and you will get the official download script
- [3] ScanRefer: Download ScanRefer annotations following the instructions HERE. Unzip inside
[DATA_ROOT]
. - [4] ReferIt3D: Download ReferIt3D annotations following the instructions HERE. Unzip inside
[DATA_ROOT]
. - [5] group_free_pred_bboxes: Download object detector's outputs. Unzip inside
[DATA_ROOT]
. (not used in single-stage method) - [6] gf_detector_l6o256.pth: Download PointNet++ checkpoint into
[DATA_ROOT]
. - [7] roberta-base: Download the roberta pytorch model:
cd [DATA_ROOT] git clone https://huggingface.co/roberta-base cd roberta-base rm -rf pytorch_model.bin wget https://huggingface.co/roberta-base/resolve/main/pytorch_model.bin
- [8] checkpoints: Our pre-trained models (see 3. Models).
- [9] ScanNetv2: Prepare the preporcessed ScanNetv2 dataset follow "Data Preparation" section from https://github.com/sunjiahao1999/SPFormer, obtaining the dataset file with the following structure:
ScanNetv2
├── data
│ ├── scannetv2
│ │ ├── scans
│ │ ├── scans_test
│ │ ├── train
│ │ ├── val
│ │ ├── test
│ │ ├── val_gt
- [10] superpoints: Prepare superpoints for each scene preprocessed from Step. 9.
cd [DATA_ROOT] python superpoint_maker.py # modify data_root & split
Dataset/Model | REC mAP@0.25 | RES mIoU | Model |
---|---|---|---|
ScanRefer/3DRefTR-SP | 55.45 | 40.76 | GoogleDrive |
ScanRefer/3DRefTR-SP (Single-Stage) | 54.43 | 40.23 | GoogleDrive |
ScanRefer/3DRefTR-HR | 55.04 | 41.24 | GoogleDrive |
ScanRefer/3DRefTR-HR (Single-Stage) | 54.40 | 40.75 | GoogleDrive |
SR3D/3DRefTR-SP | 68.45 | 44.61 | GoogleDrive |
NR3D/3DRefTR-SP | 52.55 | 36.17 | GoogleDrive |
- Please specify the paths of
--data_root
,--log_dir
,--pp_checkpoint
in thetrain_*.sh
script first. - For ScanRefer training
sh scripts/train_scanrefer_3dreftr_hr.sh sh scripts/train_scanrefer_3dreftr_sp.sh
- For ScanRefer (single stage) training
sh scripts/train_scanrefer_3dreftr_hr_single.sh sh scripts/train_scanrefer_3dreftr_sp_single.sh
- For SR3D training
sh scripts/train_sr3d_3dreftr_hr.sh sh scripts/train_sr3d_3dreftr_sp.sh
- For NR3D training
sh scripts/train_nr3d_3dreftr_hr.sh sh scripts/train_nr3d_3dreftr_sp.sh
- Please specify the paths of
--data_root
,--log_dir
,--checkpoint_path
in thetest_*.sh
script first. - For ScanRefer evaluation
sh scripts/test_scanrefer_3dreftr_hr.sh sh scripts/test_scanrefer_3dreftr_sp.sh
- For ScanRefer (single stage) evaluation
sh scripts/test_scanrefer_3dreftr_hr_single.sh sh scripts/test_scanrefer_3dreftr_sp_single.sh
- For SR3D evaluation
sh scripts/test_sr3d_3dreftr_hr.sh sh scripts/test_sr3d_3dreftr_sp.sh
- For NR3D evaluation
sh scripts/test_nr3d_3dreftr_hr.sh sh scripts/test_nr3d_3dreftr_sp.sh
This repository is built on reusing codes of EDA. We recommend using their code repository in your research and reading the related article. We are also quite grateful for SPFormer, BUTD-DETR, GroupFree, ScanRefer, and SceneGraphParser.
If you find our work useful in your research, please consider citing:
@misc{lin2023unified,
title={A Unified Framework for 3D Point Cloud Visual Grounding},
author={Haojia Lin and Yongdong Luo and Xiawu Zheng and Lijiang Li and Fei Chao and Taisong Jin and Donghao Luo and Chengjie Wang and Yan Wang and Liujuan Cao},
year={2023},
eprint={2308.11887},
archivePrefix={arXiv},
primaryClass={cs.CV}
}