/kinos

A multi-agent engine for the UBC Agents

Primary LanguageJavaScriptMIT LicenseMIT

KinOS v6 - AI Team Orchestration System

🌟 Overview

KinOS is an advanced AI team orchestration system that enables autonomous collaboration between specialized AI agents. It uses a file-based architecture to coordinate multiple GPT-4 agents working together on complex projects.

See it in action: https://nlr.ai/

✨ Key Features

  • 🤖 Autonomous Agent Teams: Pre-configured specialized teams for different project types
  • 📁 Directory-Based Operation: Uses current directory as mission context
  • 🔄 Dynamic Resource Management: Automatic scaling and resource allocation
  • 🔍 Intelligent Content Management: Built-in deduplication and content organization
  • 🔗 Git Integration: Automatic version control and change tracking
  • 📊 Progress Monitoring: Real-time status tracking and logging

What's new?

Version 6.1.2 is out! Check the Changelog

📊 Project Structure

Project Structure

💡 Best Practices

Mission Definition

  • Be specific and detailed about expected outputs and deliverables
  • Include clear format and structure requirements
  • Define validation criteria and constraints

Repository Preparation

  • Add relevant reference materials and examples as text files
  • Structure directories to match expected output
  • Include any required templates or configurations

Active monitoring

What are the agents up to?

  • Check suivi.md to get the logs and synthesis of the progress
  • Check todolist.md to see what work is coming
  • Check diagram.md to get an overview of the progress

You can also open an interactive session with kin interactive and ask it question about the agents' progress.

🚀 Getting Started

Prerequisites

  • Python 3.9+ (accessible via 'python3' or 'python')
  • Git installed
  • Node.js and npm installed (for repository visualization)
  • At least one model provider:
    • OpenAI API key (for OpenAI models)
    • Ollama (for local models)
    • OpenRouter API key (for additional providers)
  • Perplexity API key (optional, enables research capabilities)

Optional Model Providers

  • Ollama: For local model execution

    • Install from Ollama.ai
    • Usage: --model ollama_chat/<model_name>
  • OpenRouter: For additional model providers

    • Get API key from OpenRouter.ai
    • Usage: --model openrouter/<provider>/<model_name>
  • Default: OpenAI GPT-4o-mini

    • Requires OpenAI API key
    • Most stable and tested option
    • Usage: --model gpt-4o-mini (default)
  • Cairo graphics library (for SVG to PNG conversion):

    • Windows: Install GTK3 runtime from GTK for Windows
    • Linux: sudo apt-get install libcairo2-dev pkg-config python3-dev
    • macOS: brew install cairo pkg-config

Installation Steps

  1. Verify Prerequisites:

    • Python 3.8+ installed (python --version)
    • Git installed (git --version)
    • Node.js and npm installed (node --version, npm --version)
    • Cairo graphics library installed:
      • Windows: Install GTK3 runtime from GTK for Windows
      • Linux: sudo apt-get install libcairo2-dev pkg-config python3-dev
      • macOS: brew install cairo pkg-config
  2. Clone the Repository:

    git clone https://github.com/yourusername/kinos.git
    cd kinos
  3. Configure Environment:

    cp .env.example .env
    # Edit .env and add your API keys:
    # - OPENAI_API_KEY
    # - PERPLEXITY_API_KEY
  4. Run Installation Script:

    • Windows: install.bat
    • Linux/Mac:
      chmod +x install.sh
      ./install.sh

The installation script will:

  • Update git submodules
  • Install Python dependencies
  • Set up custom Aider
  • Build repo-visualizer
  • Add KinOS to your PATH

Updating KinOS

To update KinOS to the latest version:

# Windows
install.bat update

# Linux/Mac
./install.sh update

This will:

  • Pull the latest changes from the repository
  • Update all submodules
  • Update Python dependencies
  • Rebuild components as needed

Starting Your First Project

  1. Create a new project directory:
mkdir my_project
cd my_project
  1. Create a aider.mission.md file:
# Create .aider.mission.md file
# This file describes what you want to accomplish
# Example content:
"""
# Project Mission: Create a Python Web Scraper

## Objective
Build a web scraper that can:
- Extract data from e-commerce websites
- Save results to CSV files
- Handle pagination and rate limiting
- Respect robots.txt

## Requirements
- Use Python with BeautifulSoup
- Include error handling
- Add comprehensive documentation
- Create unit tests
"""
  1. Launch KinOS:
# Generate and start 6 parallel agents
kin run agents --generate --count 6
  1. Monitor Progress:
  • Check suivi.md for detailed logs
  • View diagram.svg for your repository diagram
  • Review todolist.md for pending tasks

📖 Usage

Basic Commands

# Launch with default configuration
kin run agents

# Launch with specific model
kin run agents --model <model_name>  # Use any supported model

# Use with local models via Ollama
kin run agents --model ollama_chat/llama3.1:70B  # Use local Llama 3.1

# Use with model routers
kin run agents --model openrouter/anthropic/claude-3-5-haiku  # Use Haiku 3.5 via OpenRouter

# Generate new agents
kin generate agents

# Launch an interactive session with the project
kin interactive

Required Environment Variables

OPENAI_API_KEY=your_openai_key_here        # Required for all operations
PERPLEXITY_API_KEY=your_perplexity_key_here # Required for research capabilities

Common Operations

  1. Start a New Project
# Create project directory
mkdir my_project
cd my_project

# Create mission file
echo "Project mission details..." > .aider.mission.md

# Launch KinOS
kin run agents

# add --verbose to any command to get more info

🛠️ Core Components

Agent Types

  1. SpecificationAgent: Requirements analysis and documentation
  2. ManagementAgent: Project coordination and resource allocation
  3. writingAgent: Content creation and documentation
  4. EvaluationAgent: Quality assurance and testing
  5. DeduplicationAgent: Content organization and redundancy management
  6. chroniclerAgent: Progress tracking and logging
  7. redundancyAgent: Backup and consistency management
  8. ProductionAgent: Code/content generation
  9. researcherAgent: Research and analysis
  10. IntegrationAgent: System integration and deployment

Possible Use-cases

  • 📚 Book Writing
  • 🔬 Literature Reviews
  • 💻 Coding
  • Business Plans
  • Company Documentation

🤝 Contributing

We welcome contributions! Feel free to reach out directly to me: contact on https://nlr.ai/

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Aider for enabling AI-assisted development
  • The AutonomousAI community for pioneering autonomous AI development
  • Claude for being an awesome collaborator

📞 Support

🔮 Future Plans

  • Packaged version
  • GUI
  • Improved agent convergence

Made with ❤️ by NLR, Claude & the KinOS Community