/RR-Mixer

Primary LanguagePython

RR-Mixer A Rearrangement and Restore Mixer Model for Target-Oriented Multimodal Sentiment Classification

Initial version codes for RR-Mixer: RR-Mixer A Rearrangement and Restore Mixer Model for Target-Oriented Multimodal Sentiment Classification

model

Requirement

  • Python 3.7
  • NVIDIA GPU + CUDA cuDNN
  • PyTorch 1.9.0

Data

  1. The image-text data public datasets used in this paper are TWITTER-15 and TWITTER-17.
  2. Train a visual sentiment classification model based on the ResNet-152. This datasets is provided by Yang J[1].
  3. The Object Score and IoU Score in the image are obtained using Yolov5. Also, the Senti_score is obtained using the pre-trained model from step 2.

Run

  1. search and replace relevant paths res_path = 'feature path'

  2. run

python run.py --bert_model=bert-base-uncased
--output_dir=./outupt
--data_dir=./data/twitter2015 or 2017
--task_name=twitter2015 or 2017
--do_train
  1. test
python test.py --bert_model=roberta-large-uncased
--output_dir=./outupt
--data_dir=./data/twitter2015 or 2017
--task_name=twitter2015 or 2017
--do_eval

Citation

If you find this useful for your research, please use the following.

@ARTICLE{10354512,
  author={Jia, Li and Ma, Tinghuai and Rong, Huan and Sheng, Victor S. and Huang, Xuejian and Xie, Xintong},
  journal={IEEE Transactions on Artificial Intelligence}, 
  title={A Rearrangement and Restore Mixer Model for Target-Oriented Multimodal Sentiment Classification}, 
  year={2023},
  volume={},
  number={},
  pages={1-11},
  keywords={Task analysis;Transformers;Image restoration;Mixers;Visualization;Artificial intelligence;Feature extraction;Feature Mixing;rearrangement and restore operations;MLPs-based;target-oriented multimodal sentiment classification},
  doi={10.1109/TAI.2023.3341879}}

Acknowledgements

[1] Sun H, Wang H, Liu J, et al. CubeMLP: An MLP-based model for multimodal sentiment analysis and depression estimation[C]//Proceedings of the 30th ACM international conference on multimedia. 2022: 3722-3729.

[2] Guo J, Tang Y, Han K, et al. Hire-mlp: Vision mlp via hierarchical rearrangement[C]//Proceedings of the ieee/cvf conference on computer vision and pattern recognition. 2022: 826-836.