RR-Mixer A Rearrangement and Restore Mixer Model for Target-Oriented Multimodal Sentiment Classification
Initial version codes for RR-Mixer: RR-Mixer A Rearrangement and Restore Mixer Model for Target-Oriented Multimodal Sentiment Classification
- Python 3.7
- NVIDIA GPU + CUDA cuDNN
- PyTorch 1.9.0
- The image-text data public datasets used in this paper are TWITTER-15 and TWITTER-17.
- Train a visual sentiment classification model based on the ResNet-152. This datasets is provided by Yang J[1].
- The Object Score and IoU Score in the image are obtained using Yolov5. Also, the Senti_score is obtained using the pre-trained model from step 2.
-
search and replace relevant paths res_path = 'feature path'
-
run
python run.py --bert_model=bert-base-uncased
--output_dir=./outupt
--data_dir=./data/twitter2015 or 2017
--task_name=twitter2015 or 2017
--do_train
- test
python test.py --bert_model=roberta-large-uncased
--output_dir=./outupt
--data_dir=./data/twitter2015 or 2017
--task_name=twitter2015 or 2017
--do_eval
If you find this useful for your research, please use the following.
@ARTICLE{10354512,
author={Jia, Li and Ma, Tinghuai and Rong, Huan and Sheng, Victor S. and Huang, Xuejian and Xie, Xintong},
journal={IEEE Transactions on Artificial Intelligence},
title={A Rearrangement and Restore Mixer Model for Target-Oriented Multimodal Sentiment Classification},
year={2023},
volume={},
number={},
pages={1-11},
keywords={Task analysis;Transformers;Image restoration;Mixers;Visualization;Artificial intelligence;Feature extraction;Feature Mixing;rearrangement and restore operations;MLPs-based;target-oriented multimodal sentiment classification},
doi={10.1109/TAI.2023.3341879}}
[1] Sun H, Wang H, Liu J, et al. CubeMLP: An MLP-based model for multimodal sentiment analysis and depression estimation[C]//Proceedings of the 30th ACM international conference on multimedia. 2022: 3722-3729.
[2] Guo J, Tang Y, Han K, et al. Hire-mlp: Vision mlp via hierarchical rearrangement[C]//Proceedings of the ieee/cvf conference on computer vision and pattern recognition. 2022: 826-836.