This repo is the official PyTorch implementation of ECCV2022 oral paper "Adversarially-Aware Robust Object Detector".
RobustDet is an approach to improve the adversarial robustness of CNN-based object detectors. It aims to defends adversarial attacks specifically for object detectors. For more details, please refer to our paper.
- Python 3.9
- PyTorch >= 1.8
- numpy
- cv2
pip install -r requirements.txt # install requirements
Download the PASCAL VOC and MS-COCO dataset and unpack them. The data structure should look like this
VOC
VOCdevkit
|-- VOC2007
| |-- Annotations
| |-- ImageSets
| |-- JPEGImages
|-- VOC2012
|-- Annotations
|-- ImageSets
|-- JPEGImages
COCO
coco2017
|-- 2017_clean # merge train2017 and val2017
|-- annotations
|-- instances_train2017.json
|-- instances_val2017.json
We provide codes to reproduce the results in our paper.
Download pretrained backbone and clean models, and put them intoweights/
before training.
To train RobustDet model on VOC dataset:
python train_robust.py --cfg cfgs/RobustDet_voc.yaml --adv_type mtd --data_use clean --multi_gpu False \
--basenet weights/ssd300_mAP_77.43_v2.pth --dataset_root <path_to_your_VOC_root>
Training on COCO dataset:
python train_robust.py --cfg cfgs/RobustDet_coco.yaml --adv_type mtd --data_use clean --multi_gpu False \
--basenet weights/ssd300_COCO_clean_final_300000.pth --dataset_root <path_to_your_COCO_root>
VOC
python eval_attack.py --cfg cfgs/RobustDet_voc.yaml --trained_model <path_to_your_trained_model> \
--data_use clean --adv_type cls \ # attack type, choice in [clean, cls, loc, cwat, dag]
--dataset_root <path_to_your_VOC_root>
COCO
python eval_attack.py --cfg cfgs/RobustDet_coco.yaml --trained_model <path_to_your_trained_model> \
--data_use clean --adv_type cls \ # attack type, choice in [clean, cls, loc, cwat, dag]
--dataset_root <path_to_your_COCO_root>
Our baseline method "Towards Adversarially Robust Object Detection"(MTD) and "Class-Aware Robust Adversarial Training for Object Detection github"(CWAT) both not provide source code.
But in this repo we provide the code that we reproduced.
MTD
python train_robust.py --cfg cfgs/MTD_voc.yaml --adv_type mtd --data_use clean --multi_gpu False \
--dataset_root <path_to_your_VOC_root>
CWAT
python train_robust.py --cfg cfgs/MTD_voc.yaml --adv_type cwat --data_use clean --multi_gpu False \
--dataset_root <path_to_your_VOC_root>
python eval_attack.py --cfg cfgs/MTD_voc.yaml --trained_model <path_to_your_trained_model> --data_use clean --adv_type cls
@InProceedings{dong2022robustdet,
author = {Ziyi Dong, Pengxu Wei, Liang Lin},
title = {Adversarially-Aware Robust Object Detector},
booktitle = {Proceedings of the European Conference on Computer Vision},
year = {2022}
}