Trie implementation based on the "HAT-trie: A Cache-conscious Trie-based Data Structure for Strings." (Askitis Nikolas and Sinha Ranjan, 2007) paper. For now, only the pure HAT-trie has been implemented, the hybrid version may arrive later. Details regarding the HAT-trie data structure can be found here.
The library provides an efficient and compact way to store a set or a map of strings by compressing the common prefixes. It also allows to search for keys that match a prefix.
It's a well adapted structure to store a large number of strings.
For the àrray hash part, the array-hash project is used and included as git subtree.
The library provides two classes: tsl::htrie_map
and tsl::htrie_set
.
- Header-only library, just include the project to your include path and you are ready to go.
- Low memory usage while keeping reasonable performances (see benchmark).
- Allow prefix searches through
equal_prefix_range
(usefull for autocompletion for example). - Keys are not ordered as they are partially stored in a hash map.
- All operations modifying the data structure (insert, emplace, erase, ...) invalidate the iterators.
- Support null characters in the key (you can thus store binary data in the trie).
- Support for any type of value as long at it's either copy-constructible or both nothrow move constructible and nothrow move assignable.
- The balance between speed and memory usage can be modified through the
max_load_factor
method. A lower max load factor will increase the speed, a higher one will reduce the memory usage. Its default value is set to 8.0. - The default burst threshold, which is the maximum size of an array hash node before a burst occurs, is set to 16 384 which provides good performances for exact searches. If you mainly use prefix searches, you may want to reduce it to something like 8 192 or 4 096 for faster iteration on the results through
burst_threshold
. - By default the maximum allowed size for a key is set to 65 535. This can be raised through the
KeySizeT
template parameter.
Thread-safety and exception guarantees are similar to the STL containers.
To avoid dependencies, the default hash function is a simple FNV-1a hash function. If you can, I recommend to use something like CityHash, MurmurHash, FarmHash, ... for better performances. On the tests I did with the Wikipedia dataset, CityHash64 offers a ~20% improvement on reads compared to FNV-1a.
#include <city.h>
struct str_hash {
std::size_t operator()(const char* key, std::size_t key_size) const {
return CityHash64(key, key_size);
}
};
tsl::htrie_map<char, int, str_hash> map;
If you have access to std::string_view
and you want to use the compiler provided hash implementation for strings.
#include <string_view>
struct str_hash {
std::size_t operator()(const char* key, std::size_t key_size) const {
return std::hash<std::string_view>()(std::string_view(key, key_size));
}
};
tsl::htrie_map<char, int, str_hash> map;
The std::hash<std::string>
can't be used efficiently as the structure doesn't store any std::string
object. Any time a hash would be needed a temporary std::string
would have to be created.
The benchmark consists in inserting all the titles from the main namespace of the Wikipedia archive into the data structure, check the used memory space after the insert (including potential memory fragmentation) and search for all the titles again in the data structure. The peak memory usage during the insert process is also measured with time(1).
- Dataset: enwiki-20170320-all-titles-in-ns0.gz
- Size: 262.7 MiB
- Number of keys: 13 099 148
- Average key length: 19.90
- Median key length: 17
- Max key length: 251
Each title is associated with an int (32 bits). All the hash based structures use CityHash64 as hash function. For the tests marked with reserve, the reserve
function is called beforehand to avoid any rehash.
Note that tsl::hopscotch_map
, std::unordered_map
, google::dense_hash_map
and spp::sparse_hash_map
use std::string
as key which imposes a minimum size of 32 bytes (on x64) even if the key is only one character long. Other structures may be able to store one-character keys with 1 byte + 8 bytes for a pointer (on x64).
The benchmark was compiled with GCC 6.3 and ran on Debian Stretch x64 with an Intel i5-5200u and 8Go of RAM. Best of 20 runs was taken.
The code of the benchmark can be found on Gist.
The enwiki-20170320-all-titles-in-ns0.gz dataset is alphabetically sorted. For this benchmark, we first shuffle the dataset through shuf(1) to avoid a biased sorted dataset.
Library | Data structure | Peak memory (MiB) | Memory (MiB) | Insert (ns/key) | Read (ns/key) |
---|---|---|---|---|---|
tsl::htrie_map | HAT-trie | 405.22 | 402.25 | 643.10 | 250.87 |
tsl::htrie_map max_load_factor=4 |
HAT-trie | 471.85 | 468.50 | 638.66 | 212.90 |
tsl::htrie_map max_load_factor=2 |
HAT-trie | 569.76 | 566.52 | 630.61 | 201.10 |
tsl::htrie_map max_load_factor=1 |
HAT-trie | 713.44 | 709.81 | 645.76 | 190.87 |
cedar::da | Double-array trie | 1269.68 | 1254.41 | 1102.93 | 557.20 |
cedar::da ORDERED=false | Double-array trie | 1269.80 | 1254.41 | 1089.78 | 570.13 |
cedar::da | Double-array reduced trie | 1183.07 | 1167.79 | 1076.68 | 645.79 |
cedar::da ORDERED=false | Double-array reduced trie | 1183.14 | 1167.85 | 1065.43 | 641.98 |
cedar::da | Double-array prefix trie | 498.69 | 496.54 | 1096.90 | 628.01 |
cedar::da ORDERED=false | Double-array prefix trie | 498.65 | 496.60 | 1048.40 | 628.94 |
hat-trie1 (C) | HAT-trie | 504.07 | 501.50 | 917.49 | 261.00 |
qp trie (C) | QP trie | 941.23 | 938.17 | 1349.25 | 1281.46 |
crit-bit trie (C) | Crit-bit trie | 1074.96 | 1071.98 | 2930.42 | 2869.74 |
JudySL (C) | Judy array | 631.09 | 628.37 | 884.29 | 803.58 |
JudyHS (C) | Judy array | 723.44 | 719.47 | 476.79 | 417.15 |
tsl::array_map | Array hash table | 823.54 | 678.73 | 603.94 | 138.24 |
tsl::array_map with reserve |
Array hash table | 564.26 | 555.91 | 249.52 | 128.28 |
tsl::hopscotch_map | Hash table | 1325.83 | 1077.99 | 368.26 | 119.49 |
tsl::hopscotch_map with reserve |
Hash table | 1080.51 | 1077.98 | 240.58 | 119.91 |
google::dense_hash_map | Hash table | 2319.40 | 1677.11 | 466.60 | 138.87 |
google::dense_hash_map with reserve |
Hash table | 1592.51 | 1589.99 | 259.56 | 120.40 |
spp::sparse_hash_map | Sparse hash table | 918.67 | 917.10 | 769.00 | 175.59 |
spp::sparse_hash_map with reserve |
Sparse hash table | 913.35 | 910.65 | 427.22 | 159.08 |
std::unordered_map | Hash table | 1249.05 | 1246.60 | 590.88 | 173.58 |
std::unordered_map with reserve |
Hash table | 1212.23 | 1209.71 | 350.33 | 178.70 |
- As the hash function can't be passed in parameter, the code of the library itself is modified to use CityHash64.
The key are inserted and read in alphabetical order.
Library | Data structure | Peak memory (MiB) | Memory (MiB) | Insert (ns/key) | Read (ns/key) |
---|---|---|---|---|---|
tsl::htrie_map | HAT-trie | 396.10 | 393.22 | 255.76 | 68.08 |
tsl::htrie_map max_load_factor=4 |
HAT-trie | 465.02 | 461.80 | 248.88 | 59.23 |
tsl::htrie_map max_load_factor=2 |
HAT-trie | 543.99 | 541.21 | 230.13 | 53.50 |
tsl::htrie_map max_load_factor=1 |
HAT-trie | 692.29 | 689.70 | 243.84 | 49.22 |
cedar::da | Double-array trie | 1269.58 | 1254.41 | 278.51 | 54.72 |
cedar::da ORDERED=false | Double-array trie | 1269.66 | 1254.41 | 264.43 | 56.02 |
cedar::da | Double-array reduced trie | 1183.01 | 1167.78 | 254.60 | 69.18 |
cedar::da ORDERED=false | Double-array reduced trie | 1183.03 | 1167.78 | 241.45 | 69.67 |
cedar::da | Double-array prefix trie | 621.59 | 619.38 | 246.88 | 57.83 |
cedar::da ORDERED=false | Double-array prefix trie | 621.59 | 619.38 | 187.98 | 58.56 |
hat-trie2 (C) | HAT-trie | 521.25 | 518.52 | 503.01 | 86.40 |
qp trie (C) | QP trie | 940.65 | 937.66 | 392.86 | 190.19 |
crit-bit trie (C) | Crit-bit trie | 1074.87 | 1071.98 | 430.04 | 347.60 |
JudySL (C) | Judy array | 616.95 | 614.27 | 279.07 | 114.47 |
JudyHS (C) | Judy array | 722.29 | 719.47 | 439.66 | 372.25 |
tsl::array_map | Array hash table | 826.98 | 682.99 | 612.31 | 139.16 |
tsl::array_map with reserve |
Array hash table | 565.37 | 555.35 | 246.55 | 126.32 |
tsl::hopscotch_map | Hash table | 1331.87 | 1078.02 | 375.19 | 118.08 |
tsl::hopscotch_map with reserve |
Hash table | 1080.51 | 1077.97 | 238.93 | 117.20 |
google::dense_hash_map | Hash table | 2325.27 | 1683.07 | 483.95 | 137.09 |
google::dense_hash_map with reserve |
Hash table | 1592.54 | 1589.99 | 257.22 | 113.71 |
spp::sparse_hash_map | Sparse hash table | 920.96 | 918.70 | 772.03 | 176.64 |
spp::sparse_hash_map with reserve |
Sparse hash table | 914.84 | 912.47 | 422.85 | 158.73 |
std::unordered_map | Hash table | 1249.09 | 1246.65 | 594.85 | 173.54 |
std::unordered_map with reserve |
Hash table | 1212.21 | 1209.71 | 347.40 | 176.49 |
- As the hash function can't be passed in parameter, the code of the library itself is modified to use CityHash64.
The benchmark consists in inserting all the words from the "Distinct Strings" dataset of Dr. Askitis into the data structure, check the used memory space and search for all the words from the "Skew String Set 1" dataset (where a string can be present multiple times) in the data structure. Note that the strings in this dataset have a quite short average and median key length (which may not be a realistic use case compared to the Wikipedia dataset used above). It's similar to the one on the cedar homepage.
- Dataset: distinct_1 (write) / skew1_1 (read)
- Size: 290.45 MiB / 1 029.46 MiB
- Number of keys: 28 772 169 / 177 999 203
- Average key length: 9.59 / 5.06
- Median key length: 8 / 4
- Max key length: 126 / 62
The benchmark protocol is the same as for the Wikipedia dataset.
Library | Data structure | Peak memory (MiB) | Memory (MiB) | Insert (ns/key) | Read (ns/key) |
---|---|---|---|---|---|
tsl::htrie_map | HAT-trie | 604.76 | 601.79 | 485.45 | 77.80 |
tsl::htrie_map max_load_factor=4 |
HAT-trie | 768.10 | 764.98 | 491.78 | 75.48 |
tsl::htrie_map max_load_factor=2 |
HAT-trie | 1002.42 | 999.34 | 496.78 | 72.53 |
tsl::htrie_map max_load_factor=1 |
HAT-trie | 1344.98 | 1341.97 | 520.66 | 72.45 |
cedar::da | Double-array trie | 1105.45 | 1100.05 | 682.25 | 71.98 |
cedar::da ORDERED=false | Double-array trie | 1105.47 | 1100.05 | 668.75 | 71.95 |
cedar::da | Double-array reduced trie | 941.16 | 926.04 | 684.38 | 79.11 |
cedar::da ORDERED=false | Double-array reduced trie | 941.16 | 925.98 | 672.14 | 79.02 |
cedar::da | Double-array prefix trie | 714.58 | 712.59 | 831.71 | 75.83 |
cedar::da ORDERED=false | Double-array prefix trie | 714.66 | 712.31 | 786.93 | 75.89 |
hat-trie3 (C) | HAT-trie | 786.93 | 784.32 | 743.34 | 93.58 |
qp trie (C) | QP trie | 1800.02 | 1797.21 | 987.95 | 428.51 |
crit-bit trie (C) | Crit-bit trie | 2210.52 | 2207.64 | 1986.19 | 1109.88 |
JudySL (C) | Judy array | 1025.59 | 1023.11 | 535.02 | 202.36 |
JudyHS (C) | Judy array | 1002.50 | 999.97 | 456.09 | 148.36 |
tsl::array_map | Array hash table | 1308.08 | 1031.67 | 545.82 | 46.41 |
tsl::array_map with reserve |
Array hash table | 979.44 | 921.363 | 244.19 | 45.74 |
tsl::hopscotch_map | Hash table | 2336.39 | 1611.54 | 288.70 | 47.05 |
tsl::hopscotch_map with reserve |
Hash table | 1614.22 | 1611.64 | 220.67 | 46.39 |
google::dense_hash_map | Hash table | 3913.64 | 2636.31 | 317.66 | 43.62 |
google::dense_hash_map with reserve |
Hash table | 2638.19 | 2635.68 | 227.58 | 43.09 |
spp::sparse_hash_map | Sparse hash table | 1419.69 | 1417.61 | 586.26 | 56.00 |
spp::sparse_hash_map with reserve |
Sparse hash table | 1424.21 | 1421.69 | 392.76 | 55.73 |
std::unordered_map | Hash table | 2112.66 | 2110.19 | 554.02 | 105.05 |
std::unordered_map with reserve |
Hash table | 2053.95 | 2051.67 | 309.06 | 109.89 |
- As the hash function can't be passed in parameter, the code of the library itself is modified to use CityHash64.
To use hat-trie library, just add the project to your include path. It's a header-only library.
The code should work with any C++11 standard-compliant compiler and has been tested with GCC 4.8.4, Clang 3.5.0 and Visual Studio 2015.
To run the tests you will need the Boost Test library and CMake.
git clone https://github.com/Tessil/hat-trie.git
cd hat-trie
mkdir build
cd build
cmake ..
make
./test_hat_trie
The API can be found here. If std::string_view
is available, the API changes slightly and can be found here.
#include <iostream>
#include <string>
#include <tsl/htrie_map.h>
#include <tsl/htrie_set.h>
int main() {
/*
* Map of strings to int having char as character type.
* There is no support for wchar_t, char16_t or char32_t yet,
* but UTF-8 strings will work fine.
*/
tsl::htrie_map<char, int> map = {{"one", 1}, {"two", 2}};
map["three"] = 3;
map["four"] = 4;
map.insert("five", 5);
map.insert_ks("six_with_extra_chars_we_ignore", 3, 6);
map.erase("two");
/*
* Due to the compression on the common prefixes, the letters of the string
* are not always stored contiguously. When we retrieve the key, we have to
* construct it.
*
* To avoid a heap-allocation at each iteration (when SSO doesn't occur),
* we reuse the key_buffer to construct the key.
*/
std::string key_buffer;
for(auto it = map.begin(); it != map.end(); ++it) {
it.key(key_buffer);
std::cout << "{" << key_buffer << ", " << it.value() << "}" << std::endl;
}
/*
* If you don't care about the allocation.
*/
for(auto it = map.begin(); it != map.end(); ++it) {
std::cout << "{" << it.key() << ", " << *it << "}" << std::endl;
}
tsl::htrie_map<char, int> map2 = {{"apple", 1}, {"mango", 2}, {"apricot", 3},
{"mandarin", 4}, {"melon", 5}, {"macadamia", 6}};
// Prefix search
auto prefix_range = map2.equal_prefix_range("ma");
// {mandarin, 4} {mango, 2} {macadamia, 6}
for(auto it = prefix_range.first; it != prefix_range.second; ++it) {
std::cout << "{" << it.key() << ", " << *it << "}" << std::endl;
}
// Prefix erase
map2.erase_prefix("ma");
// {apricot, 3} {melon, 5} {apple, 1}
for(auto it = map2.begin(); it != map2.end(); ++it) {
std::cout << "{" << it.key() << ", " << *it << "}" << std::endl;
}
tsl::htrie_set<char> set = {"one", "two", "three"};
set.insert({"four", "five"});
// {one} {two} {five} {four} {three}
for(auto it = set.begin(); it != set.end(); ++it) {
it.key(key_buffer);
std::cout << "{" << key_buffer << "}" << std::endl;
}
}
The code is licensed under the MIT license, see the LICENSE file for details.