/DeepStream-Yolo

NVIDIA DeepStream SDK 6.0 configuration for YOLO models

Primary LanguageC++

DeepStream-Yolo

NVIDIA DeepStream SDK 6.0 configuration for YOLO models

Future updates

  • New documentation for multiple models
  • DeepStream tutorials
  • Native PP-YOLO support
  • Dynamic batch-size

Improvements on this repository

  • Darknet CFG params parser (no need to edit nvdsparsebbox_Yolo.cpp or another file)
  • Support for new_coords, beta_nms and scale_x_y params
  • Support for new models
  • Support for new layers
  • Support for new activations
  • Support for convolutional groups
  • Support for INT8 calibration
  • Support for non square models
  • Support for reorg, implicit and channel layers (YOLOR)
  • YOLOv5 6.0 / 6.1 native support
  • YOLOR native support
  • Models benchmarks (outdated)
  • GPU YOLO Decoder (moved from CPU to GPU to get better performance) #138
  • Improved NMS #142

Getting started

Requirements

x86 platform

Jetson platform

For YOLOv5 and YOLOR

x86 platform

Jetson platform

Tested models

Benchmarks

nms = 0.45 (changed to beta_nms when used in Darknet cfg file) / 0.6 (YOLOv5 and YOLOR models)
pre-cluster-threshold = 0.001 (mAP eval) / 0.25 (FPS measurement)
batch-size = 1
valid = val2017 (COCO) - 1000 random images for INT8 calibration
sample = 1920x1080 video
NOTE: Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_box=1), YOLOv5 and YOLOR models.

NVIDIA GTX 1050 4GB (Mobile)

YOLOR-CSP performance comparison
DeepStream PyTorch
FPS (without display) 13.32 10.07
FPS (with display) 12.63 9.41
YOLOv5n performance comparison
DeepStream TensorRTx Ultralytics
FPS (without display) 110.25 87.42 97.19
FPS (with display) 105.62 73.07 50.37
More
DeepStream Precision Resolution IoU=0.5:0.95 IoU=0.5 IoU=0.75 FPS
(without display)
YOLOR-P6 FP32 1280 0.478 0.663 0.519 5.53
YOLOR-CSP-X* FP32 640 0.473 0.664 0.513 7.59
YOLOR-CSP-X FP32 640 0.470 0.661 0.507 7.52
YOLOR-CSP* FP32 640 0.459 0.652 0.496 13.28
YOLOR-CSP FP32 640 0.449 0.639 0.483 13.32
YOLOv5x6 6.0 FP32 1280 0.504 0.681 0.547 2.22
YOLOv5l6 6.0 FP32 1280 0.492 0.670 0.535 4.05
YOLOv5m6 6.0 FP32 1280 0.463 0.642 0.504 7.54
YOLOv5s6 6.0 FP32 1280 0.394 0.572 0.424 18.64
YOLOv5n6 6.0 FP32 1280 0.294 0.452 0.314 26.94
YOLOv5x 6.0 FP32 640 0.469 0.654 0.509 8.24
YOLOv5l 6.0 FP32 640 0.450 0.634 0.487 14.96
YOLOv5m 6.0 FP32 640 0.415 0.601 0.448 28.30
YOLOv5s 6.0 FP32 640 0.334 0.516 0.355 63.55
YOLOv5n 6.0 FP32 640 0.250 0.417 0.260 110.25
YOLOv4-P6 FP32 1280 0.499 0.685 0.542 2.57
YOLOv4-P5 FP32 896 0.472 0.659 0.513 5.48
YOLOv4-CSP-X-SWISH FP32 640 0.473 0.664 0.513 7.51
YOLOv4-CSP-SWISH FP32 640 0.459 0.652 0.496 13.13
YOLOv4x-MISH FP32 640 0.459 0.650 0.495 7.53
YOLOv4-CSP FP32 640 0.440 0.632 0.474 13.19
YOLOv4 FP32 608 0.498 0.740 0.549 12.18
YOLOv4-Tiny FP32 416 0.215 0.403 0.206 201.20
YOLOv3-SPP FP32 608 0.411 0.686 0.433 12.22
YOLOv3-Tiny-PRN FP32 416 0.167 0.382 0.125 277.14
YOLOv3 FP32 608 0.377 0.672 0.385 12.51
YOLOv3-Tiny FP32 416 0.095 0.203 0.079 218.42
YOLOv2 FP32 608 0.286 0.541 0.273 25.28
YOLOv2-Tiny FP32 416 0.102 0.258 0.061 231.36

dGPU installation

To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.

Open

1. Disable Secure Boot in BIOS

If you are using a laptop with newer Intel/AMD processors, please update the kernel to newer version.
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-image-unsigned-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-modules-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
sudo dpkg -i  *.deb
sudo reboot

2. Install dependencies

sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake
sudo apt-get install python3 python3-dev python3-pip
sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4
sudo apt-get install linux-headers-$(uname -r)

NOTE: Install DKMS if you are using the default Ubuntu kernel

sudo apt-get install dkms

NOTE: Purge all NVIDIA driver, CUDA, etc.

3. Disable Nouveau

sudo nano /etc/modprobe.d/blacklist-nouveau.conf
  • Add
blacklist nouveau
options nouveau modeset=0
  • Run
sudo update-initramfs -u

4. Reboot the computer

sudo reboot

5. Download and install NVIDIA Driver without xconfig

wget https://us.download.nvidia.com/tesla/470.82.01/NVIDIA-Linux-x86_64-470.82.01.run
sudo sh NVIDIA-Linux-x86_64-470.82.01.run

NOTE: If you are using default Ubuntu kernel, enable the DKMS during the installation. Else, you can skip this driver installation and install the NVIDIA driver from CUDA runfile (next step).

6. Download and install CUDA 11.4.3 without NVIDIA Driver

wget https://developer.download.nvidia.com/compute/cuda/11.4.3/local_installers/cuda_11.4.3_470.82.01_linux.run
sudo sh cuda_11.4.3_470.82.01_linux.run
  • Export environment variables
nano ~/.bashrc
  • Add
export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
  • Run
source ~/.bashrc
sudo ldconfig

NOTE: If you are using a laptop with NVIDIA Optimius, run

sudo apt-get install nvidia-prime
sudo prime-select nvidia

7. Download from NVIDIA website and install the TensorRT 8.0 GA (8.0.1)

echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda-repo.list
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt-key add 7fa2af80.pub
sudo apt-get update
sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb
sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub
sudo apt-get update
sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3

8. Download from NVIDIA website and install the DeepStream SDK 6.0

sudo apt-get install ./deepstream-6.0_6.0.0-1_amd64.deb
rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin

9. Reboot the computer

sudo reboot

Basic usage

1. Download the repo

git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo

2. Download cfg and weights files from your model and move to DeepStream-Yolo folder

3. Compile lib

  • x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
  • Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo

4. Edit config_infer_primary.txt for your model (example for YOLOv4)

[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# YOLO cfg
custom-network-config=yolov4.cfg
# YOLO weights
model-file=yolov4.weights
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.6
# Socre threshold
pre-cluster-threshold=0.25

5. Run

deepstream-app -c deepstream_app_config.txt

NOTE: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt file before run it

...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV2.txt

YOLOv5 usage

1. Copy gen_wts_yoloV5.py from DeepStream-Yolo/utils to ultralytics/yolov5 folder

2. Open the ultralytics/yolov5 folder

3. Download pt file from ultralytics/yolov5 website (example for YOLOv5n)

wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt

4. Generate cfg and wts files (example for YOLOv5n)

python3 gen_wts_yoloV5.py -w yolov5n.pt

5. Copy generated cfg and wts files to DeepStream-Yolo folder

6. Open DeepStream-Yolo folder

7. Compile lib

  • x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
  • Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo

8. Edit config_infer_primary_yoloV5.txt for your model (example for YOLOv5n)

[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# CFG
custom-network-config=yolov5n.cfg
# WTS
model-file=yolov5n.wts
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.6
# Socre threshold
pre-cluster-threshold=0.25

8. Change the deepstream_app_config.txt file

...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV5.txt

9. Run

deepstream-app -c deepstream_app_config.txt

NOTE: For YOLOv5 P6 or custom models, check the gen_wts_yoloV5.py args and use them according to your model

  • Input weights (.pt) file path (required)
-w or --weights
  • Input cfg (.yaml) file path
-c or --yaml
  • Model width (default = 640 / 1280 [P6])
-mw or --width
  • Model height (default = 640 / 1280 [P6])
-mh or --height
  • Model channels (default = 3)
-mc or --channels
  • P6 model
--p6

YOLOR usage

1. Copy gen_wts_yolor.py from DeepStream-Yolo/utils to yolor folder

2. Open the yolor folder

3. Download pt file from yolor website

4. Generate wts file (example for YOLOR-CSP)

python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg

5. Copy cfg and generated wts files to DeepStream-Yolo folder

6. Open DeepStream-Yolo folder

7. Compile lib

  • x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
  • Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo

8. Edit config_infer_primary_yolor.txt for your model (example for YOLOR-CSP)

[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# CFG
custom-network-config=yolor_csp.cfg
# WTS
model-file=yolor_csp.wts
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.6
# Socre threshold
pre-cluster-threshold=0.25

8. Change the deepstream_app_config.txt file

...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yolor.txt

9. Run

deepstream-app -c deepstream_app_config.txt

INT8 calibration

1. Install OpenCV

sudo apt-get install libopencv-dev

2. Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support

  • x86 platform
cd DeepStream-Yolo
CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
  • Jetson platform
cd DeepStream-Yolo
CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo

3. For COCO dataset, download the val2017, extract, and move to DeepStream-Yolo folder

Select 1000 random images from COCO dataset to run calibration
mkdir calibration
for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \
    cp ${jpg} calibration/; \
done
Create the calibration.txt file with all selected images
realpath calibration/*jpg > calibration.txt
Set environment variables
export INT8_CALIB_IMG_PATH=calibration.txt
export INT8_CALIB_BATCH_SIZE=1
Change config_infer_primary.txt file
...
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
...
network-mode=0
...
  • To
...
model-engine-file=model_b1_gpu0_int8.engine
int8-calib-file=calib.table
...
network-mode=1
...
Run
deepstream-app -c deepstream_app_config.txt

NOTE: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time.

Extract metadata

You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit deepstream_python_apps.

You need manipulate NvDsObjectMeta (Python/C++), NvDsFrameMeta (Python/C++) and NvOSD_RectParams (Python/C++) to get label, position, etc. of bboxes.

In C++ deepstream-app application, your code need be in analytics_done_buf_prob function. In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function.

My projects: https://www.youtube.com/MarcosLucianoTV