NVIDIA DeepStream SDK 6.0 configuration for YOLO models
- New documentation for multiple models
- DeepStream tutorials
- Native PP-YOLO support
- Dynamic batch-size
- Darknet CFG params parser (no need to edit nvdsparsebbox_Yolo.cpp or another file)
- Support for new_coords, beta_nms and scale_x_y params
- Support for new models
- Support for new layers
- Support for new activations
- Support for convolutional groups
- Support for INT8 calibration
- Support for non square models
- Support for reorg, implicit and channel layers (YOLOR)
- YOLOv5 6.0 / 6.1 native support
- YOLOR native support
- Models benchmarks (outdated)
- GPU YOLO Decoder (moved from CPU to GPU to get better performance) #138
- Improved NMS #142
- Requirements
- Tested models
- Benchmarks
- dGPU installation
- Basic usage
- YOLOv5 usage
- YOLOR usage
- INT8 calibration
- Using your custom model
- Ubuntu 18.04
- CUDA 11.4.3
- TensorRT 8.0 GA (8.0.1)
- cuDNN >= 8.2
- NVIDIA Driver >= 470.63.01
- NVIDIA DeepStream SDK 6.0
- DeepStream-Yolo
nms = 0.45 (changed to beta_nms when used in Darknet cfg file) / 0.6 (YOLOv5 and YOLOR models)
pre-cluster-threshold = 0.001 (mAP eval) / 0.25 (FPS measurement)
batch-size = 1
valid = val2017 (COCO) - 1000 random images for INT8 calibration
sample = 1920x1080 video
NOTE: Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_box=1), YOLOv5 and YOLOR models.
DeepStream | PyTorch | |
---|---|---|
FPS (without display) | 13.32 | 10.07 |
FPS (with display) | 12.63 | 9.41 |
DeepStream | TensorRTx | Ultralytics | |
---|---|---|---|
FPS (without display) | 110.25 | 87.42 | 97.19 |
FPS (with display) | 105.62 | 73.07 | 50.37 |
More
DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS (without display) |
---|---|---|---|---|---|---|
YOLOR-P6 | FP32 | 1280 | 0.478 | 0.663 | 0.519 | 5.53 |
YOLOR-CSP-X* | FP32 | 640 | 0.473 | 0.664 | 0.513 | 7.59 |
YOLOR-CSP-X | FP32 | 640 | 0.470 | 0.661 | 0.507 | 7.52 |
YOLOR-CSP* | FP32 | 640 | 0.459 | 0.652 | 0.496 | 13.28 |
YOLOR-CSP | FP32 | 640 | 0.449 | 0.639 | 0.483 | 13.32 |
YOLOv5x6 6.0 | FP32 | 1280 | 0.504 | 0.681 | 0.547 | 2.22 |
YOLOv5l6 6.0 | FP32 | 1280 | 0.492 | 0.670 | 0.535 | 4.05 |
YOLOv5m6 6.0 | FP32 | 1280 | 0.463 | 0.642 | 0.504 | 7.54 |
YOLOv5s6 6.0 | FP32 | 1280 | 0.394 | 0.572 | 0.424 | 18.64 |
YOLOv5n6 6.0 | FP32 | 1280 | 0.294 | 0.452 | 0.314 | 26.94 |
YOLOv5x 6.0 | FP32 | 640 | 0.469 | 0.654 | 0.509 | 8.24 |
YOLOv5l 6.0 | FP32 | 640 | 0.450 | 0.634 | 0.487 | 14.96 |
YOLOv5m 6.0 | FP32 | 640 | 0.415 | 0.601 | 0.448 | 28.30 |
YOLOv5s 6.0 | FP32 | 640 | 0.334 | 0.516 | 0.355 | 63.55 |
YOLOv5n 6.0 | FP32 | 640 | 0.250 | 0.417 | 0.260 | 110.25 |
YOLOv4-P6 | FP32 | 1280 | 0.499 | 0.685 | 0.542 | 2.57 |
YOLOv4-P5 | FP32 | 896 | 0.472 | 0.659 | 0.513 | 5.48 |
YOLOv4-CSP-X-SWISH | FP32 | 640 | 0.473 | 0.664 | 0.513 | 7.51 |
YOLOv4-CSP-SWISH | FP32 | 640 | 0.459 | 0.652 | 0.496 | 13.13 |
YOLOv4x-MISH | FP32 | 640 | 0.459 | 0.650 | 0.495 | 7.53 |
YOLOv4-CSP | FP32 | 640 | 0.440 | 0.632 | 0.474 | 13.19 |
YOLOv4 | FP32 | 608 | 0.498 | 0.740 | 0.549 | 12.18 |
YOLOv4-Tiny | FP32 | 416 | 0.215 | 0.403 | 0.206 | 201.20 |
YOLOv3-SPP | FP32 | 608 | 0.411 | 0.686 | 0.433 | 12.22 |
YOLOv3-Tiny-PRN | FP32 | 416 | 0.167 | 0.382 | 0.125 | 277.14 |
YOLOv3 | FP32 | 608 | 0.377 | 0.672 | 0.385 | 12.51 |
YOLOv3-Tiny | FP32 | 416 | 0.095 | 0.203 | 0.079 | 218.42 |
YOLOv2 | FP32 | 608 | 0.286 | 0.541 | 0.273 | 25.28 |
YOLOv2-Tiny | FP32 | 416 | 0.102 | 0.258 | 0.061 | 231.36 |
To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.
Open
If you are using a laptop with newer Intel/AMD processors, please update the kernel to newer version.
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-image-unsigned-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-modules-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
sudo dpkg -i *.deb
sudo reboot
sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake
sudo apt-get install python3 python3-dev python3-pip
sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4
sudo apt-get install linux-headers-$(uname -r)
NOTE: Install DKMS if you are using the default Ubuntu kernel
sudo apt-get install dkms
NOTE: Purge all NVIDIA driver, CUDA, etc.
sudo nano /etc/modprobe.d/blacklist-nouveau.conf
- Add
blacklist nouveau
options nouveau modeset=0
- Run
sudo update-initramfs -u
sudo reboot
wget https://us.download.nvidia.com/tesla/470.82.01/NVIDIA-Linux-x86_64-470.82.01.run
sudo sh NVIDIA-Linux-x86_64-470.82.01.run
NOTE: If you are using default Ubuntu kernel, enable the DKMS during the installation. Else, you can skip this driver installation and install the NVIDIA driver from CUDA runfile (next step).
wget https://developer.download.nvidia.com/compute/cuda/11.4.3/local_installers/cuda_11.4.3_470.82.01_linux.run
sudo sh cuda_11.4.3_470.82.01_linux.run
- Export environment variables
nano ~/.bashrc
- Add
export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
- Run
source ~/.bashrc
sudo ldconfig
NOTE: If you are using a laptop with NVIDIA Optimius, run
sudo apt-get install nvidia-prime
sudo prime-select nvidia
7. Download from NVIDIA website and install the TensorRT 8.0 GA (8.0.1)
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda-repo.list
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt-key add 7fa2af80.pub
sudo apt-get update
sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb
sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub
sudo apt-get update
sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3
8. Download from NVIDIA website and install the DeepStream SDK 6.0
sudo apt-get install ./deepstream-6.0_6.0.0-1_amd64.deb
rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin
sudo reboot
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo
- x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# YOLO cfg
custom-network-config=yolov4.cfg
# YOLO weights
model-file=yolov4.weights
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.6
# Socre threshold
pre-cluster-threshold=0.25
deepstream-app -c deepstream_app_config.txt
NOTE: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt file before run it
...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV2.txt
1. Copy gen_wts_yoloV5.py from DeepStream-Yolo/utils to ultralytics/yolov5 folder
3. Download pt file from ultralytics/yolov5 website (example for YOLOv5n)
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
python3 gen_wts_yoloV5.py -w yolov5n.pt
- x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# CFG
custom-network-config=yolov5n.cfg
# WTS
model-file=yolov5n.wts
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.6
# Socre threshold
pre-cluster-threshold=0.25
...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV5.txt
deepstream-app -c deepstream_app_config.txt
NOTE: For YOLOv5 P6 or custom models, check the gen_wts_yoloV5.py args and use them according to your model
- Input weights (.pt) file path (required)
-w or --weights
- Input cfg (.yaml) file path
-c or --yaml
- Model width (default = 640 / 1280 [P6])
-mw or --width
- Model height (default = 640 / 1280 [P6])
-mh or --height
- Model channels (default = 3)
-mc or --channels
- P6 model
--p6
1. Copy gen_wts_yolor.py from DeepStream-Yolo/utils to yolor folder
3. Download pt file from yolor website
python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
- x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# CFG
custom-network-config=yolor_csp.cfg
# WTS
model-file=yolor_csp.wts
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# IOU threshold
nms-iou-threshold=0.6
# Socre threshold
pre-cluster-threshold=0.25
...
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yolor.txt
deepstream-app -c deepstream_app_config.txt
sudo apt-get install libopencv-dev
- x86 platform
cd DeepStream-Yolo
CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
cd DeepStream-Yolo
CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
3. For COCO dataset, download the val2017, extract, and move to DeepStream-Yolo folder
mkdir calibration
for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \
cp ${jpg} calibration/; \
done
realpath calibration/*jpg > calibration.txt
export INT8_CALIB_IMG_PATH=calibration.txt
export INT8_CALIB_BATCH_SIZE=1
...
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
...
network-mode=0
...
- To
...
model-engine-file=model_b1_gpu0_int8.engine
int8-calib-file=calib.table
...
network-mode=1
...
deepstream-app -c deepstream_app_config.txt
NOTE: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time.
You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit deepstream_python_apps.
You need manipulate NvDsObjectMeta (Python/C++), NvDsFrameMeta (Python/C++) and NvOSD_RectParams (Python/C++) to get label, position, etc. of bboxes.
In C++ deepstream-app application, your code need be in analytics_done_buf_prob function. In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function.
My projects: https://www.youtube.com/MarcosLucianoTV