/Flask_Sklearn_CaliforniaHouse

Simple Flask App with Linear Regression model to predict California house pricing 🏠

Primary LanguageJupyter Notebook

simplinnovation

California House Pricing 🏠

A Flask app & ML Sklearn to predict California house pricing.

  1. Download/clone this repo, open and simply run it:

    $ git clone https://github.com/LintangWisesa/Flask_Sklearn_CaliforniaHouse.git
    
    $ cd Flask_Sklearn_CaliforniaHouse
    
    $ py app.py
  2. It will automatically run on http://localhost:5000/. Open it via your favourite browser then you will see its landing page:

    home

    Try to POST to http://localhost:5000/predict

    POST    /predict
    
    JSON Body request: 
        {
            "medinc" : [number],
            "houseage" : [number],
            "averooms" : [number],
            "avebedrms" : [number],
            "population" : [number],
            "aveoccup" : [number],
            "latitude" : [number],
            "longitude" : [number],
        }
  3. Back to http://localhost:5000/ then you will be redirected to its prediction page form, where you can try to predict a profile. Insert medinc, houseage, averooms, avebedrms, population, aveoccup, latitude & longitude then click Predict button. The result will be shown on http://localhost:5000/predictform:

    result

  4. Done! 👍 Enjoy your code 😎

Lintang Wisesa 💌 lintangwisesa@ymail.com

Facebook | Twitter | Google+ | Youtube | :octocat: GitHub | Hackster