Code: https://github.com/LiqunMa/SAR-LLM
accelerate==0.29.3
datasets==2.19.0
lm_eval==0.4.2
tokenizers==0.19.1
torch==2.2.2
transformers==4.40.0
wandb==0.16.2
vllm==0.3.2
- Alpaca: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json. Please save in
finetuning_data/
. - RedPajama-Data-1T-Sample: https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample. Please save in
finetuning_data/Redpajama-Sample
.
To get the tokenized data for calculate the n-gram distribution:
python preprocess_data.py
python n_gram.py
Please adjust the specific configuration parameters based on your Slurm setup:
sbatch sbatch.sh
bash eval_vllm.sh
bash eval_ppl.sh
Get the output of the AlpacaEval dataset:
bash alpaca_eval_output.sh
Get the win rate:
alpaca_eval.sh
For more information, please refer to AlpacaEval.