Official Pytorch implementation of paper "Zero Stability Well Predicts Performance of Convolutional Neural Networks" by Liangming Chen, Long Jin, and Mingsheng Shang.
CUDA_VISIBLE_DEVICES=0 python train_cifar_ZeroSNet.py --arch ZeroSNet44_Opt --dataset cifar10
Train a third-order-discretization CNN with coefficients [1, 1, 1, 1] on CIFAR-10 (Note that these coefficients lead to a non-zero-stable CNN):
CUDA_VISIBLE_DEVICES=0 python train_cifar_ZeroSNet.py --arch ZeroSNet44_Opt --dataset cifar10 --given_coe 1 1 1 1
CUDA_VISIBLE_DEVICES=0 python train_cifar_ZeroSNet.py --arch ZeroSNet56_Tra --dataset cifar100
CUDA_VISIBLE_DEVICES=7,6,5,4,3,2,1,0 python3 -m torch.distributed.launch --nproc_per_node=8 --master_port 12345 main_ZeroSNet_IN.py --arch zerosnet18_in -bs 128 --lr 0.2 --opt_level O2 --data <your data set path> --workers 8 --given_coe 0.3333333 0.5555556 0.1111111 1.77777778
CUDA_VISIBLE_DEVICES=0 nohup python3 robustness_eval.py --arch + ZeroSNet56_Opt --noise_type rand --noise_coff 0.1 --dataset cifar10 --resume True --given_ks 1 1 1 1 --save_path <your save path> --workers 4