/Lip2Wav

This is the repository containing codes for our CVPR, 2020 paper titled "Learning Individual Speaking Styles for Accurate Lip to Speech Synthesis"

Primary LanguagePythonMIT LicenseMIT

Lip2Wav

Generate high quality speech from only lip movements. This code is part of the paper: Learning Individual Speaking Styles for Accurate Lip to Speech Synthesis published at CVPR'20.

[Paper] | [Project Page] | [Demo Video]


Recent Updates

  • Dataset and Pretrained model for "Chemistry lectures" speaker is released!
  • Dataset and Pretrained model for "Chess commentary" speaker is released!
  • Dataset and Pretrained model for "Deep-learning lectures" speaker is released!
  • Multi-speaker Lip2Wav model trained on LRW dataset will be released soon! Stay tuned!

Highlights

  • First work to generate intelligible speech from only lip movements in unconstrained settings.
  • Sequence-to-Sequence modelling of the problem.
  • Dataset for 5 speakers containing 100+ hrs of video data made available! [Dataset folder of this repo]
  • Complete training code and pretrained models made available.
  • Inference code to generate results from the pre-trained models.
  • Code to calculate metrics reported in the paper is also made available.

Prerequisites

  • Python 3.7.4 (code has been tested with this version)
  • ffmpeg: sudo apt-get install ffmpeg
  • Install necessary packages using pip install -r requirements.txt
  • Face detection pre-trained model should be downloaded to face_detection/detection/sfd/s3fd.pth

Getting the weights

Speaker Link to the model
Chemistry Lectures Link
Chess Commentary Link
Deep-learning Lectures Link

Downloading the dataset

The dataset is present in the Dataset folder in this repository. The folder Dataset/chem contains .txt files for the train, val and test sets.

data_root (Lip2Wav in the below examples)
├── Dataset
|	├── chess, chem, dl (list of speaker-specific folders)
|	|    ├── train.txt, test.txt, val.txt (each will contain YouTube IDs to download)

To download the complete video data for a specific speaker, just run:

sh download_speaker.sh Dataset/chem

This should create

Dataset
├── chem (or any other speaker-specific folder)
|	├── train.txt, test.txt, val.txt
|	├── videos/		(will contain the full videos)
|	├── intervals/	(cropped 30s segments of all the videos) 

Preprocessing the dataset

python preprocess.py --speaker_root Dataset/chem --speaker chem

Additional options like batch_size and number of GPUs to use can also be set.

Generating for the given test split

python complete_test_generate.py -d Dataset/chem -r Dataset/chem/test_results \
--preset synthesizer/presets/chem.json --checkpoint <path_to_checkpoint>

#A sample checkpoint_path  can be found in hparams.py alongside the "eval_ckpt" param.

This will create:

Dataset/chem/test_results
├── gts/  (cropped ground-truth audio files)
|	├── *.wav
├── wavs/ (generated audio files)
|	├── *.wav

Calculating the metrics

You can calculate the PESQ, ESTOI and STOI scores for the above generated results using score.py:

python score.py -r Dataset/chem/test_results

Training

python train.py <name_of_run> --data_root Dataset/chem/ --preset synthesizer/presets/chem.json

Additional arguments can also be set or passed through --hparams, for details: python train.py -h

License and Citation

The software is licensed under the MIT License. Please cite the following paper if you have use this code:

@article{Prajwal2020LearningIS,
  title={Learning Individual Speaking Styles for Accurate Lip to Speech Synthesis},
  author={K R Prajwal and Rudrabha Mukhopadhyay and Vinay Namboodiri and C. V. Jawahar},
  journal={ArXiv},
  year={2020},
  volume={abs/2005.08209}
}

Acknowledgements

The repository is modified from this TTS repository. We thank the author for this wonderful code. The code for Face Detection has been taken from the face_alignment repository. We thank the authors for releasing their code and models.