Implementação do método ensemble de Florestas Aleatórias para a disciplina INF01017 Aprendizado de Máquina – 2019/1.
Para documentação detalhada, consulte o arquivo Relatório.pdf.
pip3 install -r requirements.txt
python3 random_forest.py [-h] [-s SEED] [-d DATA] [-c CLASS_COLUMN] [-sep SEP]
[-n NUM_TREES] [-k NUM_FOLDS] [-drop DROP [DROP ...]]
[-not-sample] [-cut-by-mean] [-v]
Random Forest - Aprendizado de Máquina 2019/1 UFRGS
optional arguments:
-h, --help show this help message and exit
-s SEED The random seed. (default: None)
-d DATA The dataset .csv file. (default: datasets/wine.csv)
-c CLASS_COLUMN The column of the .csv to be predicted. (default:
class)
-sep SEP .csv separator. (default: ,)
-n NUM_TREES The number of trees in the random forest. (default: 5)
-k NUM_FOLDS The number of folds used on cross validation.
(default: 10)
-drop DROP [DROP ...]
Columns to drop from .csv. (default: [])
-not-sample Do not sample attributes on each node. (default:
False)
-cut-by-mean Cut point by mean of numerical attribute. (default:
False)
-v View random tree image. (default: False)
- Lucas Alegre - LucasAlegre
- Bruno Santana - bsmlima
- Pedro Perrone - pedroperrone