Luckyseven1122/Two-stream-CNN-for-rolling-bear-fault-diagnosis
Based on the dual-flow CNN, a new bearing fault diagnosis model is proposed. The model is composed of 2D-CNN and 1D-CNN. Among them, 2D-CNN takes wavelet time-frequency map as input, and 1D-CNN takes original vibration signal as input. After the feature extraction is implemented by the convolutional layer and the pooling layer, the output of the pooling layer of the two is spliced using a fully connected layer, and then the fault classification is achieved through the fully connected layer
No issues in this repository yet.