Template for your OCR API using docTR / pytesseract / easyocr

Installation

You will only need to install Git, Docker and poetry. The container environment will be self-sufficient and install the remaining dependencies on its own.

Usage

Starting your web server

You will need to clone the repository first, go into api folder and start the api:

git clone https://github.com/LuizFelipeNeves/poc-ocr-python.git
make run

Once completed, your FastAPI server should be running on port 8080.

Documentation and swagger

FastAPI comes with many advantages including speed and OpenAPI features. For instance, once your server is running, you can access the automatically built documentation and swagger in your browser at: http://localhost:8080/docs

Using the routes

You will find detailed instructions in the live documentation when your server is up, but here are some examples to use your available API routes:

Text detection

Using the following image:

with this snippet:

import requests
with open('/path/to/your/img.jpg', 'rb') as f:
    data = f.read()
print(requests.post("http://localhost:8080/detection", files={'file': data}).json())

should yield

[{'box': [0.826171875, 0.185546875, 0.90234375, 0.201171875]},
 {'box': [0.75390625, 0.185546875, 0.8173828125, 0.201171875]}]

Text recognition

Using the following image: recognition-sample

with this snippet:

import requests
with open('/path/to/your/img.jpg', 'rb') as f:
    data = f.read()
print(requests.post("http://localhost:8080/recognition", files={'file': data}).json())

should yield

{'value': 'invite'}

End-to-end OCR

Using the following image:

with this snippet:

import requests
with open('/path/to/your/img.jpg', 'rb') as f:
    data = f.read()
print(requests.post("http://localhost:8080/ocr", files={'file': data}).json())

should yield

[{'box': [0.75390625, 0.185546875, 0.8173828125, 0.201171875],
  'value': 'Hello'},
 {'box': [0.826171875, 0.185546875, 0.90234375, 0.201171875],
  'value': 'world!'}]

Reference