Official PyTorch implementation of "Unsupervised Microvascular Image Segmentation Using an Active Contours Mimicking Neural Network" (link)
- Python 3.6
- Pytorch 0.4
- Numpy
- Scipy
- OpenCV
- Path
- tqdm
- h5py
- tifffile
- libtiff
In order to build the Morphological Pooling layer on your own machine, run the following line
python morphologicalpool/setup.py install
You can now train using the Euler-Lagrange (original paper), or the PDE (level-set) loss with additional regularization for stability.
python train_unsup.py --loss <EL/LS>
@inproceedings{gur2019unsupervised,
title={Unsupervised Microvascular Image Segmentation Using an Active Contours Mimicking Neural Network},
author={Gur, Shir and Wolf, Lior and Golgher, Lior and Blinder, Pablo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={10722--10731},
year={2019}
}