PyTorch implementation of our paper "Collaborative Learning for Extremely Low Bit Asymmetric Hashing" [Link].
- Python 2.7
- PyTorch (version >= 0.4.1)
- CIFAR download the CIFAR-10 Matlab version [Link] then run the script
matlab ./data/CIFAR-10/SaveFig.m
- NUSWIDE dataset
- MIRFlickr dataset
Method | Backbone | Code Length | ||||
4 bits | 6 bits | 8 bits | 10 bits | 12 bits | ||
MAH-flat | ResNet50 | 0.4759 | 0.8197 | 0.9339 | 0.9335 | 0.9503 |
MAH-cascade | ResNet50 | 0.7460 | 0.8950 | 0.9429 | 0.9489 | 0.9537 |
For traning with the cascaded multihead structure on different datasets:
python cascade_CIFAR-10.py --bits '4' --gpu '1' --batch-size 64
python cascade_FLICKR.py --bits '4' --gpu '1' --batch-size 64
python cascade_NUS_WIDE.py --bits '4' --gpu '1' --batch-size 64
For traning with the flat multihead structure on different datasets:
python flat_CIFAR-10.py --bits '4' --gpu '1' --batch-size 64
python flat_FLICKR.py --bits '4' --gpu '1' --batch-size 64
python flat_NUS_WIDE.py --bits '4' --gpu '1' --batch-size 64
Please cite the following paper in your publications if it helps your research:
@article{DBLP:journals/corr/abs-1809-09329,
author = {Yadan Luo and
Yang Li and
Fumin Shen and
Yang Yang and
Peng Cui and
Zi Huang},
title = {Collaborative Learning for Extremely Low Bit Asymmetric Hashing},
journal = {CoRR},
volume = {abs/1809.09329},
year = {2018},
url = {http://arxiv.org/abs/1809.09329},
archivePrefix = {arXiv},
eprint = {1809.09329},
timestamp = {Wed, 13 Mar 2019 15:40:02 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1809-09329},
bibsource = {dblp computer science bibliography, https://dblp.org}
}