/DGM-Evaluation-Metrics

Primary LanguageJupyter NotebookMIT LicenseMIT

DGM-Evaluation-Metrics

This dataset and code are presented in the paper: Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design

Please cite our paper if you use this repo. Thanks!

Regenwetter, L., Srivastava, A., Gutfreund, D., & Ahmed, F. (2023). Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design. arXiv preprint arXiv:2302.02913.

Also check out the Project page.

This repo contains implementations for:

  • 20 evaluation metrics
  • 20 dataset constructors, objective functions, and constraint functions
  • Generative Adversarial Network and Conditional GAN
  • Variational Autoencoder and Conditional VAE
  • Multi-Objective Pefromance-Aware Diverse GAN
  • Design Target Achievement Index GAN
  • Plotting distribution matching, constraint satisfaction, and performance achievement problems on 2D data

The following packages are needed:

  • Tensorflow
  • Matplotlib
  • Pymoo
  • Imageio
  • Pandas
  • Scikit-learn
  • Openpyxl