Code repo for the paper 'DVS-Voltmeter: Stochastic Process-based Event Simulator for Dynamic Vision Sensors'.
easydict == 1.9
pytorch >= 1.8
numpy >= 1.20.1
opencv-python == 4.5.1.48
tqdm == 4.49.0
The code may be compatible with lower versions, while the aforementioned ones have been tested.
The sample input video frames to try DVS-Voltmeter with are in samples on google drive. Download samples and put them in data_samples/interp folder.
To simulate events from other videos, put high frame-rate videos (can be obtained by video interpolation) in data_samples/interp folder and modify the data index tree as following:
├── [data_samples]
│ ├── interp
│ │ ├── videoname1
│ │ │ ├── info.txt
│ │ │ ├── framename11.png
│ │ │ ├── framename12.png
│ │ ├── videoname2
│ │ │ ├── info.txt
│ │ │ ├── framename21.png
│ │ │ ├── framename22.png
The video info file info.txt records the path and timestamp (
- Configure the src/config.py file. For detailed configuration, please refer to the config file.
- Run
python main.py
If you find our work useful, please use the following citation.
@inproceedings{lin2022dvsvoltmeter,
title={DVS-Voltmeter: Stochastic Process-based Event Simulator for Dynamic Vision Sensors},
author={Lin, Songnan and Ma, Ye and Guo, Zhenhua and Wen, Bihan},
booktitle={ECCV},
year={2022}
}
MIT License