M1zheng's Stars
guyulongcs/Awesome-Deep-Learning-Papers-for-Search-Recommendation-Advertising
Awesome Deep Learning papers for industrial Search, Recommendation and Advertisement. They focus on Embedding, Matching, Ranking (CTR/CVR prediction), Post Ranking, Large Model (Generative Recommendation, LLM), Transfer learning, Reinforcement Learning and so on.
HqWu-HITCS/Awesome-Chinese-LLM
整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主,包括底座模型,垂直领域微调及应用,数据集与教程等。
modelscope/ms-swift
Use PEFT or Full-parameter to finetune 400+ LLMs (Qwen2.5, InternLM3, GLM4, Llama3.3, Mistral, Yi1.5, Baichuan2, DeepSeek3, ...) and 150+ MLLMs (Qwen2-VL, Qwen2-Audio, Llama3.2-Vision, Llava, InternVL2.5, MiniCPM-V-2.6, GLM4v, Xcomposer2.5, Yi-VL, DeepSeek-VL2, Phi3.5-Vision, GOT-OCR2, ...).
QwenLM/Qwen2.5
Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.
hiyouga/LLaMA-Factory
Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024)
cristianleoo/rag-knowledge-graph
chatchat-space/Langchain-Chatchat
Langchain-Chatchat(原Langchain-ChatGLM)基于 Langchain 与 ChatGLM, Qwen 与 Llama 等语言模型的 RAG 与 Agent 应用 | Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM, Qwen and Llama) RAG and Agent app with langchain
datawhalechina/hand-bert
Building BERT Model with PyTorch
datawhalechina/desktop-pet
基于文心一言和树莓派Pico的最简易桌面宠物
datawhalechina/smart-prompt
一个构建“听话”提示词的教程
datawhalechina/wow-rag
A simple and trans-platform rag framework and tutorial
SCHENLIU/longformer-chinese
chinese version of longformer
yongzhuo/Keras-TextClassification
中文长文本分类、短句子分类、多标签分类、两句子相似度(Chinese Text Classification of Keras NLP, multi-label classify, or sentence classify, long or short),字词句向量嵌入层(embeddings)和网络层(graph)构建基类,FastText,TextCNN,CharCNN,TextRNN, RCNN, DCNN, DPCNN, VDCNN, CRNN, Bert, Xlnet, Albert, Attention, DeepMoji, HAN, 胶囊网络-CapsuleNet, Transformer-encode, Seq2seq, SWEM, LEAM, TextGCN
cxcygzs/Learning_ResourcesForGraduates
研究生知识图谱学习资源
thunlp/CSSReview
This repository contains the paperlist of CSS.
Xu1Aan/KGExplorer
本项目旨在结合知识图谱技术和先进的大语言模型,构建一个能够深入理解用户问题并提供准确、有逻辑性回答的智能问答系统。
littlewwwhite/KnowledgeGraph-based-on-Raw-text-A27
基于大模型+知识图谱的知识库问答