This repository corresponds to the STATCOM submission "CineJENSE: Simultaneous Cine MRI Image Reconstruction and Sensitivity Map Estimation using Neural Representations" by Ziad Al-Haj Hemidi, Nora Vogt, Lucile Quillien, Christian Weihsbach, Mattias P. Heinrich, and Julien Oster.
This code is written in Python 3.7.4 and uses the following packages:
- pytorch
- numpy
- scipy
- h5py
- tiny-cuda-nn
See pyproject.toml for more details.
To install the package, run the following command in the terminal:
git clone git@github.com:ziadhemidi/CineJense.git
cd CineJense
poetry lock && poetry install
You also have to install tinycudann. You can do it using the following command:
poetry run pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
You can find more instructions to tincudann here.
To run the code, you can use the following command:
poetry run python3.9 run_inference.py --input <input_file> --output <output_file> --dataset <dataset_name> --coil <coil_name> --task <task_name>
where <input_file>
is the path to the input file, <output_file>
is the path to the output file, <dataset_name>
is the name of the dataset, <coil_name>
is the name of the coil and <task_name>
is the name of the task.
For example, to run the code on the dataset TestSet
with the coil Multicoil
and the task Cine
, you can use the following command:
poetry run python3.9 run_inference.py --input /input --output /output --dataset 'TestSet' --coil 'Multicoil' --task 'Cine
This code is licensed under the MIT license. If you use this code, please cite the following paper:
@inproceedings{al2023cinejense,
title={CineJENSE: Simultaneous Cine MRI Image Reconstruction and Sensitivity Map Estimation Using Neural Representations},
author={Al-Haj Hemidi, Ziad and Vogt, Nora and Quillien, Lucile and Weihsbach, Christian and Heinrich, Mattias P and Oster, Julien},
booktitle={International Workshop on Statistical Atlases and Computational Models of the Heart},
pages={467--478},
year={2023},
organization={Springer}
}