A python wrapper around the Open FIGI v3 API that leverages pandas DataFrames to make requests and return data.
- Automatically throttles requests to respect the API rate limit
- Automatically handles the chunking and retrieval of mapping jobs
- Automatically handles the pagination of search requests
- Queries are given by providing the relevant method with a pandas DataFrame, allowing easy integration with existing reference data pipelines.
To install this library simply run pip install openfigipy
.
import pandas as pd
from openfigipy import OpenFigiClient
# api key can either be given with the api_key argument
# or set as the environment variable `OPENFIGI_API_KEY`
ofc = OpenFigiClient()
# establish a requests session
ofc.connect()
# create a dataframe of look-ups - each row represents one query that will
# be batched in jobs
# the column headers represent the relevant key from the open figi api
df = pd.DataFrame({'idType': ['TICKER', 'ID_BB_GLOBAL'],
'idValue': ['IBM', 'BBG0032FLQC3'], 'currency': ['USD', 'USD'],
'marketSecDes': ['Equity', 'Equity'], 'exchCode': ['US', None]})
print(df)
# idType idValue currency marketSecDes
# 0 TICKER IBM USD Equity
# 1 ID_BB_GLOBAL BBG0032FLQC3 USD Equity
result = ofc.map(df)
print(result.head())
# q_idType q_idValue q_currency ... shareClassFIGI securityType2 securityDescription
# 0 TICKER IBM USD ... BBG001S5S399 Common Stock IBM
# 1 ID_BB_GLOBAL BBG0032FLQC3 USD ... BBG001S5N8V8 Common Stock AAPL
print(result.columns.tolist())
# ['q_idType',
# 'q_idValue',
# 'q_currency',
# 'q_marketSecDes',
# 'q_exchCode',
# 'query_number',
# 'status_code',
# 'status_message',
# 'figi',
# 'name',
# 'ticker',
# 'exchCode',
# 'compositeFIGI',
# 'securityType',
# 'marketSector',
# 'shareClassFIGI',
# 'securityType2',
# 'securityDescription']
The resulting dataframe will keep your original query columns, prefixed with
q_
as well as the documented response from the Open FIGI API. This is to
ensure there isn't an overlap i.e. if your query contains exchCode
and the
results do to. There are also some additional helper columns described below
too.
query_number
: Shows which query the result is related to, can be helpful when
a query returns multiple matches.
result_number
: Shows the order in which the results were returned by the Open
FIGI API. Generally the best match is shown first (i.e. result_number
0)
status_code
: one of ('success', 'warning', 'error') as per the documentation
on the Open FIGI API.
status_message
: The associated message with the given status_code
. Helpful
for understanding why results might not have been returned.
To run all unit tests for this module:
$ pytest
Please be aware some tests might take some time since they call external APIs.
- Setup testing (integration and unit testing). Learn about mocking
- Setup automatic documentation generation w/ Sphinx
- explore if type hinting could help
- Setup automatic linting and checking
- Setup continuous integration
- tests
- documentation
- pypi publishing