/pascoletti-serafini

Matlab implementation of Pascoletti Serafini scalarization for solving MOPs

Primary LanguageMATLAB

Pascoletti Sarafini scalarization

ps_solver.m: This is a matlab implementation of the Pascoletti Sarafini scalarization for solving multiple criteria optimisation problems (MOPs).

Given a multiobjective optimisation problem (MOP):

(MOP) min C·x

s.t.

A·x ≦ b

x≧0

x∊ℝ^n, C∊ℝ^{nxQ}, A∊ℝ^{mxn}, b∊ℝ^m

We can use the Pascoletti Serafini (PS(a,r)), to iteratively find out all weakly non-dominated points:

(PS(a,r)) min t

s.t. a + t·r - f(x) ∊ ℝ^Q_≧

x∊S, a∊ℝ^Q, r∊ℝ^Q

  • choose r∊ℝ^Q_> to always attain a solution
  • choose a∊ℝ^Q to be all points on hyperplane with negative gradient intersecting the Ideal point of (MOP)
    • limit the hyperplane at the lexmins