SPV-clustering-SpCVAE
Codebase for the study "Clustering of Polar Vortex States Using Convolutional Autoencoders" by Mikhail Krinitskiy, Yulia Zyulyaeva and Sergey Gulev.
@inproceedings{krinitskiy12019clustering,
author = {Mikhail Krinitskiy, Yulia Zyulyaeva and Sergey Gulev},
title = {Clustering of polar vortex states using convolutional autoencoders},
year = {2019}
}
@proceedings{ithpc2019,
editor = {Sergey I. Smagin and Alexander A. Zatsarinnyy},
title = "Information Technologies and High-Performance Computing",
booktitle = "Short Paper Proceedings of the V International Conference on Information Technologies and High-Performance Computing",
publisher = {ceur-ws.org}
venue = {Khabarovsk, Russia},
month = sep,
year = {2019}
}
Usage:
$ train.sh
train.py
arguments one may specify in train.sh
:
--snapshot
- switch for resuming training from a snapshot.
--run-name
- name for a training run, which is used for naming of logs and backups directories
--batch-size
- batch size, default=32
--val-batch-size
- batch size for validation stage, default=32
--gpu
- id of the GPU to use (as reported by nvidia-smi
)
--epochs
- number of epochs to train; default=200
--steps-per-epoch
- number of steps (batches) per epoch
--val-steps
- number of steps (batches) per validation stage; default=100
--no-snapshots
- the switch disabling snapshots saving
--variational
- the switch enabling variational loss component
--debug
- the switch enabling DEBUG
mode
--embeddims
- embeddings dimensionality; default=128