Description

This package contains 2 functions,plot_geo_time_value() and plot_gif_geo_time_value(), used to draw input data on a map of France.

Usage

plot_geo_time_value(x, y, year, value, proj='mercator', axs=None, name=[], hue='', **kwargs)

Draws input data values on a series of maps of France (Matplotlib subplots), 1 per year. Saves output to output.pdf

Parameter Description
x longitude (list)
y latitudes (list)
year years to draw (list)
value values to draw (dataframe or numpy array)
proj projection methods (string)
axs matplotilb axes returned by the matplotlib.subplot() function
name names of the places to draw (vector)
hue meaning of the values (string)

plot_gif_geo_time_value(x, y, year, value, proj='mercator', method='gif', fig=None, ax=None, name=[], hue='', **kwargs)

Makes a video of the evolution of input data values of the years on a map of France (matplotlib Axe object). Saves output to output.'method'

Parameter Description
x longitude (list)
y latitudes (list)
year years to draw (list)
value values to draw (dataframe or numpy array)
proj projection methods (string)
method file output format (string)
fig matplotilb figure to draw on
axs matplotilb axes returned by the matplotlib.subplot() function
name names of the places to draw (vector)
hue meaning of the values (string)

Example of usage

Example of project using this package : https://github.com/gabsens/Python-for-Data-Scientists-ENSAE/blob/master/Devoir/IREP%20et%20devoir.ipynb

fig, axs = plt.subplots(2, 2, figsize=(20,20), subplot_kw={'projection': ccrs.Mercator()})

# data longiture/latitude
x, y = data['LLX'], data['LLY']

years = range(2004, 2008)
years_str = [str(year) for year in years]

values = data[[colname for colname in data.columns.values if colname[-4:] in years_str]].astype('float')

plot_geo_time_value(x, y, year=years, value=values, proj='mercator', axs=axs, hue='produits dangereux')`

output1

fig, ax = plt.subplots(figsize=(10,10), subplot_kw={'projection': ccrs.Mercator()})

# data longiture/latitude
x, y = data['LLX'], data['LLY']

years = range(2003, 2018)
years_str = [str(year) for year in years]

values = data[[colname for colname in data.columns.values if colname[-4:] in years_str]].astype('float')

plot_gif_geo_time_value(x, y, value=values, year=years, fig=fig, ax=ax, proj='mercator', method='gif', hue='produits dangereux')

output2