VisemeNet Code Readme

Environment

  • Python 3.5
  • Tensorflow 1.1.0
  • Cudnn 5.0

Python Package

  • numpy
  • scipy
  • python_speech_features
  • matplotlib

Input/Output

  • Input audio needs to be 44.1kHz, 16-bit, WAV format
  • Output visemes are applicable to the JALI-based face-rig, see HERE

JALI Viseme Annotation Dataset

  • BIWI dataset with well-annotated JALI viseme parameters. [DATASET] [README]

At test time:

  1. Create and install required envs and packages
conda create -n visnet python=3.5
  
# take care of your OS and python version, here is a Linux-64bit with Python3.5 link
pip install --ignore-installed --upgrade https://download.tensorflow.google.cn/linux/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-linux_x86_64.whl
  
pip install PYTHON_PACKAGE_REQUIRED
  1. Download this repository to your local machine:
git clone https://github.com/yzhou359/VisemeNet_tensorflow.git  

cd VisemeNet_tensorflow 
  1. Prepare data and model:

    • convert your test audio files into WAV format, put it to the directory data/test_audio/
    • download the public face rig model from HERE, put all 4 files to data/ckpt/pretrain_biwi/
  2. Forward inference:

    • put your test audio file name in file 'main_test.py', line 7.
    • Then run command line
python main_test.py

The result locates at:

data/output_viseme/[your_audio_file_name]/mayaparam_viseme.txt
  1. JALI animation in Maya:
    • put your test audio file name in file 'maya_animation.py', line 4.
    • Then run 'maya_animation.py' in Maya with JALI environment to create talking face animation automatically. (If using different version of JALI face rig, the name of phoneme/co-articulation variable might varies.)
    • UPDATE: 'maya_animation.py' has been updated with the public face rig annotations. Feel free to play with it!