- 性能情况 Performance
- 所需环境 Environment
- 文件下载 Download
- 注意事项 Attention
- 预测步骤 How2predict
- 训练步骤 How2train
- 评估步骤 How2eval
- 参考资料 Reference
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 |
---|---|---|---|---|
COCO-Train2017 | efficientdet-d0.pth | COCO-Val2017 | 512x512 | 33.1 |
COCO-Train2017 | efficientdet-d1.pth | COCO-Val2017 | 640x640 | 38.8 |
COCO-Train2017 | efficientdet-d2.pth | COCO-Val2017 | 768x768 | 42.1 |
COCO-Train2017 | efficientdet-d3.pth | COCO-Val2017 | 896x896 | 45.6 |
COCO-Train2017 | efficientdet-d4.pth | COCO-Val2017 | 1024x1024 | 48.8 |
COCO-Train2017 | efficientdet-d5.pth | COCO-Val2017 | 1280x1280 | 50.2 |
COCO-Train2017 | efficientdet-d6.pth | COCO-Val2017 | 1408x1408 | 50.7 |
COCO-Train2017 | efficientdet-d7.pth | COCO-Val2017 | 1536x1536 | 51.2 |
torch==1.2.0
训练所需的pth可以在百度网盘下载。
包括Efficientdet-d0到d7所有权重。
链接: https://pan.baidu.com/s/1Kvv526YYSDJEf9BzWfIb3Q 提取码: f9g3
VOC数据集下载地址如下:
VOC2007+2012训练集
链接: https://pan.baidu.com/s/16pemiBGd-P9q2j7dZKGDFA 提取码: eiw9
VOC2007测试集
链接: https://pan.baidu.com/s/1BnMiFwlNwIWG9gsd4jHLig 提取码: dsda
1、训练前一定要注意权重文件与Efficientdet版本的对齐!
2、注意修改训练用到的voc_classes.txt文件!
3、注意修改预测用到的voc_classes.txt文件!
a、下载完库后解压,在百度网盘下载Efficientdet-d0到d7的权重,运行predict.py,输入
img/street.jpg
可完成预测。
b、利用video.py可进行摄像头检测。
a、按照训练步骤训练。
b、在efficientdet.py文件里面,在如下部分修改model_path、classes_path和phi使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。phi为所使用的efficientdet的版本。
_defaults = {
"model_path": 'model_data/efficientdet-d0.pth',
"classes_path": 'model_data/coco_classes.txt',
"phi": 0,
"confidence": 0.3,
"cuda": True
}
c、运行predict.py,输入
img/street.jpg
可完成预测。
d、利用video.py可进行摄像头检测。
1、本文使用VOC格式进行训练。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
4、在训练前利用voc2efficientdet.py文件生成对应的txt。
5、再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
6、此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置。
7、在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'
model_data/new_classes.txt文件内容为:
cat
dog
...
8、修改train.py的classes_path,运行train.py即可开始训练。
评估过程可参考视频https://www.bilibili.com/video/BV1zE411u7Vw
步骤是一样的,不需要自己再建立get_dr_txt.py、get_gt_txt.py等文件。
- 本文使用VOC格式进行评估。
- 评估前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
- 评估前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
- 在评估前利用voc2efficientdet.py文件生成对应的txt,评估用的txt为VOCdevkit/VOC2007/ImageSets/Main/test.txt,需要注意的是,如果整个VOC2007里面的数据集都是用于评估,那么直接将trainval_percent设置成0即可。
- 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
- 运行get_dr_txt.py和get_gt_txt.py,在./input/detection-results和./input/ground-truth文件夹下生成对应的txt。
- 运行get_map.py即可开始计算模型的mAP。
更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://github.com/Cartucho/mAP