-encoder_type
-gcn_num_inputs Input size for the gcn layer
-gcn_num_units Output size for the gcn layer
-gcn_num_labels Number of labels for the edges of the gcn layer
-gcn_num_layers Number of gcn layers
-gcn_in_arcs Use incoming edges of the gcn layer
-gcn_out_arcs Use outgoing edges of the gcn layer
-gcn_residual Decide wich skip connection to use between GCN layers 'residual' or 'dense' default it is set as no residual connections
-gcn_use_gates Switch to activate edgewise gates
-gcn_use_glus Node gates
Add the following arguments to use pre-trained embeddings:
```
-pre_word_vecs_enc data/gcn_exp.embeddings.enc.pt \
-pre_word_vecs_dec data/gcn_exp.embeddings.dec.pt \
```
Note: The reported results for both model variants were obtained by *averaging 3 runs* with the following seeds: 42, 43, 44.
Note: The GCN_EC variant used 6 gcn layers and dense connections, and HIDDEN=EMBED=300
Note: reported examples in table 3 and table 5 of the paper are from development set
Note: add gold texts in table 5 for webnlg
### Generate ###
Generating with obtained model:
```
python3 translate.py -model data/tmp__acc_4.72_ppl_390.39_e1.pt -data_type gcn -src data/webnlg/dev-webnlg-all-delex-src-nodes.txt -tgt data/webnlg/dev-webnlg-all-delex-tgt.txt -src_label data/webnlg/dev-webnlg-all-delex-src-labels.txt -src_node1 data/webnlg/dev-webnlg-all-delex-src-node1.txt -src_node2 data/webnlg/dev-webnlg-all-delex-src-node2.txt -output data/webnlg/delexicalized_predictions_dev.txt -replace_unk -verbose
```
### Postprocessing and Evaluation ###
For post processing follow step 2 and 3 of WebNLG scripts.
For evaluation follow the instruction of the WebNLG challenge [baseline](