/KrippendorffAlphaComputerVision

Krippendorff Alpha implementation for various tasks in Computer Vision

Primary LanguagePython

Inter Annotator Agreement

This is the code for evaluating Krippendorffs Alpha for object detection or instance segemantation as explained in our paper (see at the bottom) .

1 Installation

Clone via ssh

git@github.com:Madave94/KrippendorffAlphaComputerVision.git

Clone via https

https://github.com/Madave94/KrippendorffAlphaComputerVision.git

2 Create and activate virtual environment

Enter folder: cd inter_annotator_agreement

Create virtual environment: python3 -m venv iaa_env

Activate virtual environment: source iaa_env/bin/activate

Run setup.py: python setup.py develop

3 Using the library

The main file iaa.py has 6 input arguments

mode = bbox or segm box depending on the type of annotation to evaluate

result_destination = path where the results are stored

--annotation_format = format of the annotations for which to evaluate the iaa - only coco is valid currently

--iou_threshold = values above this threshold are considered to be the same boxes/masks, default is 0.5

--iaa_threshold = values above this threshold are considered okay, all other are malicious, default is 0.6

--filter = filter by specific files or books, default/no filter is ""

Example usage:

python3 src/iaadet/calculate_iaa.py bbox src/landscape_annotations.json test_result

4 Run tests

Navigate to parent folder and run:

pytest -v

Cite us

@inproceedings{10.1007/978-3-031-16788-1_22,
  title={A Dataset for Analysing Complex Document Layouts in the Digital Humanities and its Evaluation with Krippendorff ’s Alpha},
  author={Tschirschwitz, David and Klemstein, Franziska and Stein, Benno and Rodehorst, Volker},
  booktitle="Pattern Recognition",
  year={2022},
  publisher="Springer International Publishing",
  address="Cham",
  pages="354--374",
}