This is the code for evaluating Krippendorffs Alpha for object detection or instance segemantation as explained in our paper (see at the bottom) .
git@github.com:Madave94/KrippendorffAlphaComputerVision.git
https://github.com/Madave94/KrippendorffAlphaComputerVision.git
Enter folder: cd inter_annotator_agreement
Create virtual environment: python3 -m venv iaa_env
Activate virtual environment: source iaa_env/bin/activate
Run setup.py: python setup.py develop
The main file iaa.py
has 6 input arguments
mode
= bbox or segm box depending on the type of annotation to evaluate
result_destination
= path where the results are stored
--annotation_format
= format of the annotations for which to evaluate the iaa - only coco is valid currently
--iou_threshold
= values above this threshold are considered to be the same boxes/masks, default is 0.5
--iaa_threshold
= values above this threshold are considered okay, all other are malicious, default is 0.6
--filter
= filter by specific files or books, default/no filter is ""
Example usage:
python3 src/iaadet/calculate_iaa.py bbox src/landscape_annotations.json test_result
Navigate to parent folder and run:
pytest -v
@inproceedings{10.1007/978-3-031-16788-1_22,
title={A Dataset for Analysing Complex Document Layouts in the Digital Humanities and its Evaluation with Krippendorff ’s Alpha},
author={Tschirschwitz, David and Klemstein, Franziska and Stein, Benno and Rodehorst, Volker},
booktitle="Pattern Recognition",
year={2022},
publisher="Springer International Publishing",
address="Cham",
pages="354--374",
}