/GradCAM_Auto

这是一个用于计算ViT及其变种模型的GradCAM自动脚本,可以自动处理批量的图像 A GradCAM automatic script to visualize the model result

Primary LanguageJupyter Notebook

GradCAM_On_ViT

这是一个用于计算ViT及其变种模型的GradCAM自动脚本,可以自动处理批量的图像

A GradCAM automatic script to visualize the model result

How to adjust your XXXFormer in GradCam

Please ensure that your model is in a proper format.

If the transformer you apply into is a swin'-like transformer(No Class Token) or ViT-like (Have a Class token)

The shape of the tensor may look like [Batch,49,768] then you should deal with your model with the following steps to avoid some terrible RuntimeError

Class XXXFormer(nn.Moudle):
    def __init(self,...):
        super().__init__()
        .....
        self.avgpool = nn.AdaptiveAvgPool1d(1) #this is essential
    def forward(self,x):
        x = self.forward_feartrue(x) # Supose that the out put is [Batch,49,768]
        x = self.avgpool(x.transpose(1,2)) # [Batch,49,768] --> [Batch,768,49] --> [Batch,768,1]
        x = torch.flatten(x,1) # [Batch,768]

Get Your Target Layer

Find your last transformer block and select the LayerNorm() attribute as your target layer if you have more than one LayerNorm() attribute you can get them all in a list or just select one of them

Your target layer may look like

# choose one LayerNorm() attribute for your target layer
target_Layer1 = [vit.block[-1].norm1]
target_Layer2 = [vit.block[-1].norm2]
# or stack up them all
target_Layer3 = [vit.block[-1].norm1,vit.block.norm2]

Why do we choose LayerNorm as the target layer?

Reference: On the Expressivity Role of LayerNorm in Transformer's Attention (ACL 2023).

The reason may be like this as shown in the picture

image

  • Automatic_Swim_variant_CAM.py
  • Automatic_ViT_variant_CAM.py

the two .py file shown above is the main Python script you need to run just set up your image file and run these two scripts!!

Using EigenCam as an example

Result

Param you need to Pay attention

parser.add_argument('--path', default='./image', help='the path of image')
parser.add_argument('--method', default='all', help='the method of GradCam can be specific ,default all')
parser.add_argument('--aug_smooth', default=True, choices=[True, False],
                    help='Apply test time augmentation to smooth the CAM')
parser.add_argument('--use_cuda', default=True, choices=[True, False],
                    help='if use GPU to compute')
parser.add_argument(
    '--eigen_smooth',
    default=False, choices=[True, False],
    help='Reduce noise by taking the first principle componenet'
         'of cam_weights*activations')
parser.add_argument('--modelname', default="ViT-B-16", help='Any name you want')
Method
CrossFormer (ICLR 2022)
Vision Transformer (ICLR 2021)