This week we will review several popular feed-forward neural network architectures that are common in commercial applications.
- Module 1: RNNs & LSTMs
- Objectives:
- Describe recurrent neural network architecture
- Use an LSTM to generate text based on some input
- Objectives:
- Module 2: CNNs
- Objectives:
- Describe convolutions and convolutions within neural networks
- Apply pre-trained CNNs to image classification problems
- Objectives:
- Module 3: Autoencoders
- Objectives:
- Describe the componenets of an autoencoder
- Train an autoencoder
- Apply an autoencoder to a basic information retreval problem
- Objectives:
- Module 4: Artificial General Intelligence & the Future
- Objectives:
- Describe the history of artificial intelligence research
- Know the important research achievements in AI
- Delineate the ethnical challenges faces AI
- Objectives:
Hello world testing
mkl-fft==1.0.12 1.1.0 mkl-random==1.0.2 1.1.1 mkl-service==2.0.2 2.3.0
1.1.0 conda install -c conda-forge mkl_fft
1.1.1 conda install -c conda-forge mkl_random
2.3.0 conda install -c anaconda mkl-service