Korean Embedding Benchmark with AutoRAG
This is a benchmark of Korean embedding models.
With AutoRAG, you can make this kind of benchmark easy and fast.
Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
paraphrase-multilingual-mpnet-base-v2 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
KoSimCSE-roberta |
0.4298 |
0.4298 |
0.4298 |
0.4298 |
0.4298 |
0.4298 |
Cohere embed-multilingual-v3.0 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
0.3596 |
openai ada 002 |
0.4737 |
0.4737 |
0.4737 |
0.4737 |
0.4737 |
0.4737 |
multilingual-e5-large-instruct |
0.4649 |
0.4649 |
0.4649 |
0.4649 |
0.4649 |
0.4649 |
Upstage Embedding |
0.6579 |
0.6579 |
0.6579 |
0.6579 |
0.6579 |
0.6579 |
paraphrase-multilingual-MiniLM-L12-v2 |
0.2982 |
0.2982 |
0.2982 |
0.2982 |
0.2982 |
0.2982 |
openai_embed_3_small |
0.5439 |
0.5439 |
0.5439 |
0.5439 |
0.5439 |
0.5439 |
ko-sroberta-multitask |
0.4211 |
0.4211 |
0.4211 |
0.4211 |
0.4211 |
0.4211 |
openai_embed_3_large |
0.6053 |
0.6053 |
0.6053 |
0.6053 |
0.6053 |
0.6053 |
KU-HIAI-ONTHEIT-large-v1 |
0.7105 |
0.7105 |
0.7105 |
0.7105 |
0.7105 |
0.7105 |
KU-HIAI-ONTHEIT-large-v1.1 |
0.7193 |
0.7193 |
0.7193 |
0.7193 |
0.7193 |
0.7193 |
kf-deberta-multitask |
0.4561 |
0.4561 |
0.4561 |
0.4561 |
0.4561 |
0.4561 |
gte-multilingual-base |
0.5877 |
0.5877 |
0.5877 |
0.5877 |
0.5877 |
0.5877 |
bge-m3 |
0.6754 |
0.6754 |
0.6754 |
0.6754 |
0.6754 |
0.6754 |
KoE5 |
0.6930 |
0.6930 |
0.6930 |
0.6930 |
0.6930 |
0.6930 |
Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
paraphrase-multilingual-mpnet-base-v2 |
0.2368 |
0.4737 |
0.1579 |
0.2032 |
0.2032 |
0.2712 |
KoSimCSE-roberta |
0.3026 |
0.6053 |
0.2018 |
0.2661 |
0.2661 |
0.3515 |
Cohere embed-multilingual-v3.0 |
0.2851 |
0.5702 |
0.1901 |
0.2515 |
0.2515 |
0.3321 |
openai ada 002 |
0.3553 |
0.7105 |
0.2368 |
0.3202 |
0.3202 |
0.4186 |
multilingual-e5-large-instruct |
0.3333 |
0.6667 |
0.2222 |
0.2909 |
0.2909 |
0.3856 |
Upstage Embedding |
0.4211 |
0.8421 |
0.2807 |
0.3509 |
0.3509 |
0.4743 |
paraphrase-multilingual-MiniLM-L12-v2 |
0.2061 |
0.4123 |
0.1374 |
0.1740 |
0.1740 |
0.2340 |
openai_embed_3_small |
0.3640 |
0.7281 |
0.2427 |
0.3026 |
0.3026 |
0.4097 |
ko-sroberta-multitask |
0.2939 |
0.5877 |
0.1959 |
0.2500 |
0.2500 |
0.3351 |
openai_embed_3_large |
0.3947 |
0.7895 |
0.2632 |
0.3348 |
0.3348 |
0.4491 |
KU-HIAI-ONTHEIT-large-v1 |
0.4386 |
0.8772 |
0.2924 |
0.3421 |
0.3421 |
0.4766 |
KU-HIAI-ONTHEIT-large-v1.1 |
0.4430 |
0.8860 |
0.2953 |
0.3406 |
0.3406 |
0.4778 |
kf-deberta-multitask |
0.3158 |
0.6316 |
0.2105 |
0.2792 |
0.2792 |
0.3679 |
gte-multilingual-base |
0.4035 |
0.8070 |
0.2690 |
0.3450 |
0.3450 |
0.4614 |
bge-m3 |
0.4342 |
0.8684 |
0.2895 |
0.3436 |
0.3436 |
0.4757 |
KoE5 |
0.4386 |
0.8772 |
0.2924 |
0.3406 |
0.3406 |
0.4757 |
Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
paraphrase-multilingual-mpnet-base-v2 |
0.1813 |
0.5439 |
0.1088 |
0.1575 |
0.1575 |
0.2491 |
KoSimCSE-roberta |
0.2164 |
0.6491 |
0.1298 |
0.1751 |
0.1751 |
0.2873 |
Cohere embed-multilingual-v3.0 |
0.2076 |
0.6228 |
0.1246 |
0.1640 |
0.1640 |
0.2731 |
openai ada 002 |
0.2602 |
0.7807 |
0.1561 |
0.2139 |
0.2139 |
0.3486 |
multilingual-e5-large-instruct |
0.2544 |
0.7632 |
0.1526 |
0.2194 |
0.2194 |
0.3487 |
Upstage Embedding |
0.2982 |
0.8947 |
0.1789 |
0.2237 |
0.2237 |
0.3822 |
paraphrase-multilingual-MiniLM-L12-v2 |
0.1637 |
0.4912 |
0.0982 |
0.1437 |
0.1437 |
0.2264 |
openai_embed_3_small |
0.2690 |
0.8070 |
0.1614 |
0.2148 |
0.2148 |
0.3553 |
ko-sroberta-multitask |
0.2164 |
0.6491 |
0.1298 |
0.1697 |
0.1697 |
0.2835 |
openai_embed_3_large |
0.2807 |
0.8421 |
0.1684 |
0.2088 |
0.2088 |
0.3586 |
KU-HIAI-ONTHEIT-large-v1 |
0.3041 |
0.9123 |
0.1825 |
0.2137 |
0.2137 |
0.3783 |
KU-HIAI-ONTHEIT-large-v1.1 |
0.3099 |
0.9298 |
0.1860 |
0.2148 |
0.2148 |
0.3834 |
kf-deberta-multitask |
0.2281 |
0.6842 |
0.1368 |
0.1724 |
0.1724 |
0.2939 |
gte-multilingual-base |
0.2865 |
0.8596 |
0.1719 |
0.2096 |
0.2096 |
0.3637 |
bge-m3 |
0.3099 |
0.9298 |
0.1860 |
0.2221 |
0.2221 |
0.3894 |
KoE5 |
0.3012 |
0.9035 |
0.1807 |
0.2051 |
0.2051 |
0.3697 |
Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
paraphrase-multilingual-mpnet-base-v2 |
0.1212 |
0.6667 |
0.0667 |
0.1197 |
0.1197 |
0.2382 |
KoSimCSE-roberta |
0.1324 |
0.7281 |
0.0728 |
0.1080 |
0.1080 |
0.2411 |
Cohere embed-multilingual-v3.0 |
0.1324 |
0.7281 |
0.0728 |
0.1150 |
0.1150 |
0.2473 |
openai ada 002 |
0.1563 |
0.8596 |
0.0860 |
0.1051 |
0.1051 |
0.2673 |
multilingual-e5-large-instruct |
0.1483 |
0.8158 |
0.0816 |
0.0980 |
0.0980 |
0.2520 |
Upstage Embedding |
0.1707 |
0.9386 |
0.0939 |
0.1078 |
0.1078 |
0.2848 |
paraphrase-multilingual-MiniLM-L12-v2 |
0.1053 |
0.5789 |
0.0579 |
0.0961 |
0.0961 |
0.2006 |
openai_embed_3_small |
0.1547 |
0.8509 |
0.0851 |
0.0984 |
0.0984 |
0.2593 |
ko-sroberta-multitask |
0.1276 |
0.7018 |
0.0702 |
0.0986 |
0.0986 |
0.2275 |
openai_embed_3_large |
0.1643 |
0.9035 |
0.0904 |
0.1180 |
0.1180 |
0.2855 |
KU-HIAI-ONTHEIT-large-v1 |
0.1707 |
0.9386 |
0.0939 |
0.1105 |
0.1105 |
0.2860 |
KU-HIAI-ONTHEIT-large-v1.1 |
0.1722 |
0.9474 |
0.0947 |
0.1033 |
0.1033 |
0.2822 |
kf-deberta-multitask |
0.1388 |
0.7632 |
0.0763 |
0.1 |
0.1 |
0.2422 |
gte-multilingual-base |
0.1675 |
0.9211 |
0.0921 |
0.1066 |
0.1066 |
0.2805 |
bge-m3 |
0.1754 |
0.9649 |
0.0965 |
0.1125 |
0.1125 |
0.2939 |
KoE5 |
0.1675 |
0.9211 |
0.0921 |
0.0993 |
0.0993 |
0.2734 |
Model name |
F1 |
Recall |
Precision |
mAP |
mRR |
NDCG |
paraphrase-multilingual-mpnet-base-v2 |
0.0320 |
0.8158 |
0.0163 |
0.0233 |
0.0233 |
0.1529 |
KoSimCSE-roberta |
0.0368 |
0.9386 |
0.0188 |
0.0270 |
0.0270 |
0.1758 |
Cohere embed-multilingual-v3.0 |
0.0382 |
0.9737 |
0.0195 |
0.0220 |
0.0220 |
0.1763 |
openai ada 002 |
0.0375 |
0.9561 |
0.0191 |
0.0295 |
0.0295 |
0.1789 |
multilingual-e5-large-instruct |
0.0378 |
0.9649 |
0.0193 |
0.0295 |
0.0295 |
0.1804 |
Upstage Embedding |
0.0392 |
1.0000 |
0.0200 |
0.0206 |
0.0206 |
0.1776 |
paraphrase-multilingual-MiniLM-L12-v2 |
0.0313 |
0.7982 |
0.0160 |
0.0218 |
0.0218 |
0.1503 |
openai_embed_3_small |
0.0382 |
0.9737 |
0.0195 |
0.0202 |
0.0202 |
0.1731 |
ko-sroberta-multitask |
0.0354 |
0.9035 |
0.0181 |
0.0245 |
0.0245 |
0.1691 |
openai_embed_3_large |
0.0382 |
0.9737 |
0.0195 |
0.0210 |
0.0210 |
0.1741 |
KU-HIAI-ONTHEIT-large-v1 |
0.0385 |
0.9825 |
0.0196 |
0.0212 |
0.0212 |
0.1758 |
KU-HIAI-ONTHEIT-large-v1.1 |
0.0385 |
0.9825 |
0.0196 |
0.0206 |
0.0206 |
0.1750 |
kf-deberta-multitask |
0.0351 |
0.8947 |
0.0179 |
0.0228 |
0.0228 |
0.1654 |
gte-multilingual-base |
0.0392 |
1.0000 |
0.0200 |
0.0259 |
0.0259 |
0.1834 |
bge-m3 |
0.0392 |
1.0000 |
0.0200 |
0.0206 |
0.0206 |
0.1775 |
KoE5 |
0.0385 |
0.9824 |
0.0196 |
0.0208 |
0.0208 |
0.1752 |
pip install -r requirements.txt
- Make
.env
file using .env.template
file. You have to prepare three api keys, openai, cohere, and upstage.
- Run evaluator with the following command.
python main.py --project_dir ./project_dir
- Check the result in the project_dir folder.