This GitHub repository contains the code library used to create the results of the paper RIS-Assisted High-Resolution Radar Sensing
submitted to IEEE Transactions on Signal Processing, June 2024.
Author: Martin Voigt Vejling
E-Mail: mvv@{math,es}.aau.dk
- Beamforming.py
Backend implementation of beamforming techniques: Bartlett, Capon, MUSIC.
- CompressiveSensing.py
Backend implementation of OMP.
- SensingMetrics.py
Implementation of the OSPA metric.
- PositionEstimation_v2
Module to do weighted non-linear least squares.
- DataAssociation.py
Module to do data association.
- system.py
System and signal model.
- MainEstimationCore.py
Skeleton core for the estimation algorithm.
- ChAnalysis.py
Module to run analysis of the detection probability and Cramér-Rao lower bounds.
- TheoreticalAnalysis.py
Module supporting the theoretical analysis of coherence and detection probability.
- MainEstimation.py
Main module for the estimation algorithm. Runs the algorithm.
- system_config.toml
File to specify experiment configurations.
- DetectionSimulationStudy.py
Run simulation study to evaluate the detection probability.
- FisherSimulationStudy.py
Run simulation study to evaluate the Cramér-Rao lower bound.
- MainSimulationStudy.py
Run simulation study to sensing algorithm performance.
- Figure 2 & 4: TheoreticalCoherenceStudy.py
- Figure 3: PlotWorkingPrinciple.py
- Figure 5: TheoreticalTildeCStudy.py
- Figure 6 & 7: TheoreticalDetectionStudy.py
- Figure 8: results/FisherStudyPlot.py
- Figure 9a & 9b: results/DetectionMultiStudyPlot.py
- Figure 9c: results/MainStudyPlot.py
python 3
numpy
scipy
matplotlib
toml
multiprocessing
tqdm