WMH segmentation using FLAIR.
Research article »
Report Bug
·
Request Feature
Weights can be recived on request.
-data
--imagesTr
---ID1.nii.gz
...
--labelsTr
---ID1.nii.gz
...
--imagesvalTr
---ID5.nii.gz
...
--labelsvalTr
---ID5.nii.gz
...
5. Run command docker run -it --gpus all --shm-size=8g --ulimit memlock=-1 --ulimit stack=67108864 --rm -v ${PWD}/:/workspace wmh:latest /bin/bash
.
DSC: 0.6808092008717108 +- 0.1749727617385947
Hausdorff: 9.751399615092273 +- 9.279947874717204
Recall: 0.7914909337086632 +- 0.16611485702407042
F1: 0.5269392661792544 +- 0.1548622287067465
AVD: 55.08561295745984 +- 54.99577215339091
The other models used:
nnU-Net -> https://catalog.ngc.nvidia.com/orgs/nvidia/resources/nnunet_for_pytorch (Achieved best results)
Deep Bayesian Networks (Hypermapp3r) -> https://hypermapp3r.readthedocs.io/en/latest/