This project provides the code and results for 'RGB-T Semantic Segmentation with Location, Activation, and Sharpening', IEEE TCSVT, 2023. IEEE link and arxiv link Homepage
python 3.7/3.8 + pytorch 1.9.0 (biult on EGFNet)
We provide segmentation maps on MFNet dataset and PST900 dataset under './model/'.
Performace on MFNet dataset
Performace on PST900 dataset
- Install 'apex'.
- Download MFNet dataset (code: 3b9o) or PST900 dataset (code: mp2h).
- Use 'generate_binary_labels.m' to get binary labels, and use 'generate_bound_or_edge.m' to get edge labels.
- Run train_LASNet.py (default to MFNet Dataset).
Note: our main model is under './toolbox/models/LASNet.py'
-
Download the following pre-trained model and put it under './model/'. model_MFNet.pth (code: 5th1) model_PST900.pth (code: okdq)
-
Rename the name of the pre-trained model to 'model.pth', and then run test_LASNet.py (default to MFNet Dataset).
@ARTICLE{Li_2023_LASNet,
author = {Gongyang Li and Yike Wang and Zhi Liu and Xinpeng Zhang and Dan Zeng},
title = {RGB-T Semantic Segmentation with Location, Activation, and Sharpening},
journal = {IEEE Transactions on Circuits and Systems for Video Technology},
year = {2023},
volume = {33},
number = {3},
pages = {1223-1235},
month = {Mar.},
}
If you encounter any problems with the code, want to report bugs, etc.
Please contact me at lllmiemie@163.com or ligongyang@shu.edu.cn.