This package allows you to easily and quickly make a precautionary approach graph with a simple dataset.
The installation requires beforehand to install devtools, than you can install and load “precAppGraph”
library(devtools)
install_github("MathieuGenu/precAppGraph")
A dataset is included in the package, it corresponds to the Herring fishery data of the greater north sea ecoregion (https://www.ices.dk/). The data set contains a data.frame and 4 parameters required to make a precautionary approach graph :
The dataframe contains the following columns :
- Year
- R
- SSB
- F
needed to use the graph function.
Year | R | SSB | F | Total_catch |
---|---|---|---|---|
1947 | 56498800 | 5499130 | 0.120 | 581760 |
1948 | 56131100 | 4474570 | 0.120 | 502100 |
1949 | 50827000 | 4340320 | 0.132 | 508500 |
1950 | 69744900 | 4292960 | 0.138 | 491700 |
1951 | 62253800 | 4110430 | 0.167 | 600400 |
1952 | 59223700 | 4115720 | 0.170 | 664400 |
To make the graph use the function pa_graph().
DF_fish <- Herring_ICES$Herring_data
Fpa <- Herring_ICES$Fpa
Bpa <- Herring_ICES$Bpa
Flim <- Herring_ICES$Flim
Blim <- Herring_ICES$Blim
NS_herring_pa <- pa_graph(
fish_data = DF_fish,
Fpa = Fpa,
Bpa = Bpa,
Flim = Flim,
Blim = Blim
)
pa_graph has a ggplot object in output, therefore, it is easy to modify it and add title, change labels,…
library(grid)
herr_jpeg <- jpeg::readJPEG("img/Clupea_harengus_Gervais.jpg")
NS_herring_pa +
annotation_custom(rasterGrob(herr_jpeg),
xmin = 0.8,
xmax = 1.2,
ymin = 4e6,
ymax = 5e6)