The code is built upon https://github.com/oskopek/mvae
- Python 3.7
- Pytorch 1.6.0
- numpy
- scikit-learn
- geoopt
This script trains models for recommendation. Metrics are printed at the end of training.
optional arguments:
-h, --help Show this help message and exit
--dataset Name of dataset
--lr Learning rate
--rg L2 regularization
--dropout Dropout probability
--cuda Which cuda device to use (-1 for cpu training)
--epoch Number of epochs to train
--batch Training batch size
--dim Dimension of each embedding
--manifold Which manifold to use, an be any on [unite,...]
--seed Seed for training
--beta Strength of disentanglement
--tau Temperature of sigmoid/softmax, in (0, 1)
--std Standard deviation of the Gaussian prior
--nogb Disable Gumbel-Softmax sampling
--gamma GAMMA gamma for lr scheduler
--component List of manifold to be used. e: Euclidean, s: hypersphere, h: hyperboloid, e.g., 'h6'