/Book-Price-Prediction

Book price dataset analysis and modeling

Primary LanguageJupyter Notebook

Book Prices Prediction

Contents

Data Understanding

Understanding data and features

info

Data Cleaning For EDA

  • Renaming columns
  • Categorical to numerical
  • Feature expansion
  • Feature extraction
  • Null values handling

Exploratory Data Analysis

  • Univariate Analysis

    • Target analysis
    • Numerical features
    • Categorical features
  • Bivariate Analysis

    • Year analysis
    • Population analysis
    • Price analysis

Data Preprocessing

  • Target Log

  • Encoding

    • Ordinal
    • One Hot
    • Count Vectorizer
  • Discretization

  • Normalization

  • Scaling

  • Standardization

  • Outlier Detection

Modeling

Random forest regressor is used.

Evaluation

MSE for train and test datasets

  • Train MSE

  • tr

  • Test MSE

  • te

Feature Importance

f