题目来源于武老师的每日一题,答案是自己做的,不太严谨,仅供参考
答案:
$$
\text{函数定义域是指自变量}x\text{的取值范围,不可以把}x+1\text{作为自变量,}x\text{才是自变量,}
\\
\text{同一个}f()\text{,括号内整体范围相同。由题意得}0\leqslant x\leqslant a\Rightarrow 1\leqslant x+1\leqslant a+1\text{,所以}f\left( x \right) \text{定义域为}\left[ 1,a+1 \right]
$$
答案:
$$
f\left[ \varphi \left( x \right) \right] =1-x^2,f\left( x \right) ={e^x}^{^2}\Longrightarrow e^{\varphi ^2\left( x \right)}=1-x,\text{两边同时求}\ln ,\varphi ^2\left( x \right) =\ln \left( 1-x \right)
\\
\text{由题意得}\varphi \left( x \right) \ge 0,\text{两边开根号},\varphi \left( x \right) =\sqrt{\ln \left( 1-x \right)},\text{负半边不要了,只留正的。定义域:}\ln \left( 1-x \right) \ge 0\Rightarrow 1-x\ge 1\Rightarrow x\le 0
$$
答案:
$$
g\left( x \right) =\begin{cases}
2-x, x\le 0\\
x+2,x\ge 0\\
\end{cases},f\left( x \right) =\begin{cases}
x^2, x<0\\
-x,x\ge 0\\
\end{cases},f\left( x \right) \text{是}g\left( x \right) \text{的复合函数}
\\
x^2,x<0\text{但是}x^2>0,-x,x\ge 0\text{但是}-x<0,\text{所以}g\left[ f\left( x \right) \right] =\begin{cases}
2+x^{}, x\ge 0\\
x^2+2,x<0\\
\end{cases},\text{注意}x\text{的取值,与}f\left( x \right) \text{的取值是一致的}
$$
答案:
$$
\text{把}y\text{换成}x,g\left( x \right) =\left{ \begin{array}{c}
-\sqrt{\frac{1-x}{2}},x<-1\\
\sqrt[3]{x},-1\le x\le 8\\
\frac{x+16}{12},x>8\\
\end{array} \right.
$$