- Install requirements & repo for baseline segmentation
git clone git@github.com:Miffka/seismogen.git
cd seismogen
pip install -r requirements/train.txt
pip install -r requirements/torch.txt
pip install -e .
- Install requirements & repo for MobileStyleGAN
I only made it a package.
git clone git@github.com:Miffka/MobileStyleGAN.pytorch.git
pip install -r requirements.txt
pip install -e .
Download data from Google Drive Folder and put it into data/
folder in the root of repository.
To train baseline models use command python seismogen/models/hor_segmentation/train.py
with the following arguments
- Train on both F3 Demo and Penobscot
python seismogen/models/hor_segmentation/train.py --augmentation_intensity slight --seg_model_arch FPN --pretrained_weights imagenet --epochs 5 --task_name e5_fpn_slight_tr_f3_pen --evaluate_before_training --train_datasets f3_demo penobscot
- Train on F3 Demo, evaluate on Penobscot
python seismogen/models/hor_segmentation/train.py --augmentation_intensity slight --seg_model_arch FPN --pretrained_weights imagenet --epochs 5 --task_name e5_fpn_slight_tr_f3_te_pen --evaluate_before_training --train_datasets f3_demo --test_datasets penobscot
- Train on Penobscot, evaluate on F3 Demo
python seismogen/models/hor_segmentation/train.py --augmentation_intensity slight --seg_model_arch FPN --pretrained_weights imagenet --epochs 5 --task_name e5_fpn_slight_tr_pen_te_f3 --evaluate_before_training --train_datasets penobscot --test_datasets f3_demo
Review of the data used in the work:
{
"Kerry": [
{
"volume": "raw/Kerry/Kerry3e.sgy",
"horizons": "raw/Kerry/Kerry_h_ix_bulk.dat",
"markup": "processed/Kerry/markup/00_Kerry3e.csv"
}
],
"Parihaka": [
{
"volume": "raw/Parihaka/Parihaka_PSTM_far_stack.sgy",
"horizons": "raw/Parihaka/Parihaka_h_ix_bulk.dat",
"markup": "processed/Parihaka/markup/00_Parihaka_PSTM_far_stack.csv"
}
],
"Poseidon": [
{
"volume": "raw/Poseidon/Poseidon_i1000-3600_x900-3200.sgy",
"horizons": "raw/Poseidon/Poseidon_h_ix_bulk.dat",
"markup": "processed/Poseidon/markup/00_Poseidon_i1000-3600_x900-3200.csv"
}
],
"SEG_2020_W_18": [
{
"volume": "raw/SEG_2020_W_18/TestData_Image1.segy",
"markup": "processed/SEG_2020_W_18/markup/00_TestData_Image1.csv"
},
{
"volume": "raw/SEG_2020_W_18/TestData_Image2.segy",
"markup": "processed/SEG_2020_W_18/markup/01_TestData_Image2.csv"
},
{
"volume": "raw/SEG_2020_W_18/TrainingData_Image.segy",
"mask": "raw/SEG_2020_W_18/TrainingData_Labels.segy",
"markup": "processed/SEG_2020_W_18/markup/02_TrainingData_Image.csv"
}
],
"f3_demo": [
{
"volume": "raw/f3_demo/f3_demo_2020_wnull.sgy",
"horizons": "raw/f3_demo/f3_3d_horizons.dat",
"markup": "processed/f3_demo/markup/00_f3_demo_2020_wnull.csv"
}
],
"FORCE_ML_Competition_2020": [
{
"volume": "raw/FORCE_ML_Competition_2020/ichthys_3D_seismic_for_fault_competition.sgy",
"markup": "processed/FORCE_ML_Competition_2020/markup/00_ichthys_3D_seismic_for_fault_competition.csv"
}
],
"penobscot": [
{
"volume": "raw/penobscot/1-PSTM_stack_agc.sgy",
"horizons": "raw/penobscot/penobscot_horizons.dat",
"markup": "processed/penobscot/markup/00_1-PSTM_stack_agc.csv"
}
]
}
(c) Miffka