/gogeom

This is a Geometrical library for Go Language. Which includes multiple Geometrical calculations like Circle, Lines etc in different forms

Primary LanguageGo

Gogeom - A Geometrical library for the Go programming language.

Mindorks Mindorks Community License

This is a Geometrical library for Go Language.
Which includes multiple Geometrical calculations like Circle, Lines etc in different forms.

Installation

Installation is done using go get.

go get -u github.com/MindorksOpenSource/gogeom

These are following shape calculation which is supported by gogeom.

  • Circle
  • Line
  • Ellipse
  • Parabola
  • Triangle
  • Quadrilaterals
  • N-agons(polygons)
  • more to come..

Circle

gogeom can handle two form of Circle.

  • Radius Form
    (x-a)^2 + (y-b)^2 = r^2 
    where,
    (a,b) is the center and "r" is the radius of the circle
    
  • General Form
    x2 + y2 + Ax + By+ C = 0
    where,
    A,B and C are real numbers
    

Step to follow :

  • import shape "github.com/MindorksOpenSource/gogeom"
  • Initalize two circles as (in Radius Form),
import geometry "github.com/MindorksOpenSource/gogeom"

func main() {
    // (x-a)^2 + (y-b)^2 = r^2 and (x-c)^2 + (y-d)^2 = s^2  are circle equation
    // r, s are radius of two circles
r := shape.RadiusFormCircle{
        // a, b , r , c, d, s
        2, 3, 4, 5, 6, 7,
	}
}
  • Initalize two circles as (in General Form),
import `shape "github.com/MindorksOpenSource/gogeom"

func main() {
// x2 + y2 + Ax + By+ C = 0 and  x2 + y2 + Dx + Ey + F = 0 are circle equation
g := shape.GeneralFormOfCircle{
        // a, b , r , c, d, s
        2, 3, 4, 5, 6, 7,
	}
}

Calculations for Circles

Working Radius Form General Form
Distance between two centers of circles r.DistanceBetweenTwoCenters() g.DistanceBetweenTwoCenters()
Line Equation Connecting Two Centers r.LineEquationConnectingTwoCenters() g.LineEquationConnectingTwoCenters()
Check if both Circles Intersect r.DoesCircleIntersect()
Check if both Circles does not Intersect r.AreTwoNonIntersectingCircle()
Area of Circle-1 and Circle-2 r.AreaOfCircles()
Circumference of Circle-1 and Circle-2 r.CircumferenceOfCircles()
is the area of the triangle formed by the two circle centers and one of the intersection point. The sides of this triangle are S, r0 and R0 , the area is calculated by Heron' s formula. r.CalculateDelta()
Calculates x1,y1,x2,y2 r.CalculateXY()
Calculates x1,y1 r.CalculateAB()
Calculates x2,y2 r.CalculateCD()
Calculates x1,x2 r.CalculateXs()
Calculates y1,y2 r.CalculateYs()
Calculates the Line Equation connecting both intersection points r.LineEquationConnectingTwoIntersectionPoint() g.LineEquationConnectingTwoIntersectionPoint()
Check if Both Circles Touch Each other as tangent r.IsTangent() g.IsTangent()
Check if two circles has Outer Circle Tangency r.IsOuterCircleTangency()
Check if two circle has Inner Circle Tangency r.IsInnerCircleTangency()
Tangential Points r.TangentPoint() g.TangentPoint()
Slope of Line of Intersection Point r.SlopeOfConnectingLineOfTwoIntersectionPoint() g.SlopeOfConnectingLineOfTwoIntersectionPoint()
Radius of Both Circls R1,R2 g.RadiusOfTwoCircle()

Line

gogeom can handle two form of Line.

  • General Form

    Ax+By+C =0
    where A, B and C are any real number and A and B are not both zero.``` 
    
  • Two Point Form

    (x1,y1) and (x2,y2) form two lines passing through it
    

    Step to follow :

  • import shape "github.com/MindorksOpenSource/gogeom"

  • Initalize two lines as (in General Form),

// initialise one line 
l := shape.GeneralLine{
        // a, b, c
        2, 3, 4,
	}
}

---- or if you have to initialise multiple line ----
l := shape.GeneralLines{
        // a, b, c, d, e, f
        2, 3, 4, 5, 6, 7,
	}
}
---- or if you have two point line ----
l := shape.GeneralLines{
        // a, b, c, d, e, f
        2, 3, 4, 5, 
	}
}

  • Initalize two lines as (in Two Point Form Line Form),

Calculations for Line

Working General Form (Single Line) General Form (Multiple Lines) Two Point Form
Slope of Line l.SlopeOfLine() l.SlopeOfLine()
Y-Intercept l.YIntercept()
X-Intercept l.XIntercept()
Mid-Point of the line l.MidPoints()
Intersection of two lines Ax + By + C = 0 and Dx + Ey + F = 0 l.IntersectionOfLines()
Point (x, y) which divides the line connecting two points (x1 , y1) and (x2 , y2) in the ratio p:q l.DividingPoints(p,q)
Point (x, y) which divides the line connecting two points (x1 , y1) and (x2 , y2) externally in the ratio p:q l.ExternalDividingPoints(p,q)
Angle Between Two Lines l.AngleBetweenTwoLines()
Line Eqn passing two points l.LineThroughTwoPoint()
EquiDistant Parallel Line l.EquiDistantParallelLine()
Distance Between Two Points l.DistanceBetweenTwoPoints()
Distance Between Intercepts l.DistanceBetweenInterecepts()

Ellipse

Ellipse Equation,

x^2/a^2 + y^2/b^2 = 1,
(center at   x = 0   y = 0)

Step to follow :

  • import shape "github.com/MindorksOpenSource/gogeom"
  • Initalize ellipse,
e := shape.Ellipse {
        // a, b
        1,2
}
Working General Form (Single Line) Result
Eccentricity of Ellipse e.GetEccentricity() float64
Shape Of Locus e.GetShapeOfLocus() Circle/Ellipse/Parabola/Hyerbola
Slope Of Tangent Line at x1,y1 e.GetSlopeOfTangentLine(x1,y1) float64
Tangent Line Equation at x1,y1 e.GetTangentLineEquation(x1,y1) string
Ramanujan Approx Circumference of ellipse e.RamanujanApproxCircumference() float64

Parabola

Gogeom can support two form

  • Equation of Parabola
  y^2 = 4ax
  or 
  x^2 = 4ay
  or 
  (y - k)^2 = 4a(x - h)
  where, (h,k) are vertex
  or
  (x - h)^2 = 4a(y - k)
  where, (h,k) are vertex

  • import shape "github.com/MindorksOpenSource/gogeom"
  • Initalize Parabola,
p := shape.Parabola {
        1,
        true // where this boolean value indicates if the parabola is on Y-Axis or not.
}
---- or ----

p :=shape.Parabola {
        1,
        true // where this boolean value indicates if the parabola is on Y-Axis or not.
}

Step to follow :

Working Parabola With Origin Parabola Result
Lenght Of Latus Ration p.LenghtOfLatusRation() p.LenghtOfLatusRation() float64
Focus p.FocusOfParabola() p.FocusOfParabola() float64,float64
Directrix Equation p.DirectrixEquation() p.DirectrixEquation() string
Axis Equation p.AxisEquation() p.AxisEquation() string
Vertex p.Vertex() string
Position Of Point - x,y p.PositionOfPoint(x,y) string
Point Of Interesction - y = mx + c p.PointOfInteresction(m,c) string
Tangent Equation - x,y p.TangentEquation(x,y) string
Normal Equation - x,y p.NormalEquation(x,y) string
Chord Of Contact Equation - x,y p.ChordOfContactEquation(x,y) string
Polar Of Point - x,y p.PolarOfPoint(x,y) string
Pole Of line - lx + my + x = 0 p.PoleOfline(l,m) float64, float64

Triangle

Gogeom supports the following types of triangle and their respective calculations

  • Right Angled Triangle
  • Isosceles Triangle
  • Equilateral Triangle
  • Scalene Triangle

Step to follow :

  • import shape "github.com/MindorksOpenSource/gogeom"
  • Initialize triangles
//Right Triangle
rt := shape.RightTriangleSides {
	//base, height, hypotenuse
	4, 3, 5,
}

//Isosceles Triangle
it := shape.IsoscelesTriangleSides {
	//base, slants
	6,8,
}

//Equilateral Triangle
et := shape.EquilateralTriangleSides {
	//side
	6,
}

//Scalene Triangle
st := shape.ScaleneTriangleSides {
	//side1, side2, side3
	3,4,5,
}

Calculations for Triangles

Triangle Input values Working Calculation Result
Right Triangle base, height, hypotenuse Perimeter rt.PerimeterOfRightTriangle() float64
Area rt.AreaOfRightTriangle() float64
Altitude rt.AltitudeOfRightTriangleBase() rt.AltitudeOfRightTriangleHeight() rt.AltitudeOfRightTriangleHypotenuse() float64
Isosceles Triangle base,slants Perimeter it.PerimeterOfIsoscelesTriangle() float64
Area it.AreaOfIsoscelesTriangle() float64
Altitude it.AltitudeOfIsoscelesTriangle() float64
Equilateral Triangle side Perimeter et.PerimeterOfEquilateralTriangle() float64
Area et.AreaOfEquilateralTriangle() float64
Altitude et.AltitudeOfEquilateralTriangle() float64
Scalene Triangle side1, side2, side3 Perimeter Area st.PerimeterOfScaleneTriangle() st.AreaOfScaleneTriangle() float64

Quadrilaterals

Gogeom supports the following types of quadrilaterals and their respective calculations

  • Square
  • Rectangle
  • Parallelogram
  • Trapezium/Trapezoid
  • Rhombus
  • Scalene Quadrilaterals

Step to follow :

  • import shape "github.com/MindorksOpenSource/gogeom"
  • Initialize quadrilaterals
//when Square sides are known
sqs := shape.SquareSides {
	//side
	4,
}

//when Square diagonals are known
sqd := shape.SquareDiagonals {
	//diagonal
	9,
}

//rectangle
rct := shape.RectangleSides {
	//length, breadth
	6,10,
}

//parallelogram
plg := shape.ParallelogramSides {
	//base, slant, height
	10,6,4.5,
}

//trapezium sides with height
tph := shape.TrapeziumSidesWithHeight {
	//base, top, height
	10,5,4.6,
}

//trapezium sides with slants
tps := shape.TrapeziumSidesWithSlants {
	//base, top, slant1, slant2
	10,5,5.2,5.7,
}

//rhombus with diagonals are known
rmd := shape.RhombusDiagonals {
	//diagonal1, diagonal2
	10,8,
}

//rhombus with sides and height known
rms := shape.RhombusSides {
	//side, height
	8,7,
}

//scalene quadrilateral
scq := shape.ScaleneQuadrilateralSides {
	//side1, side2, side3, side4
	4,8,6,5,
}

Calculations for Quadrilaterals

Quadrilaterals Input Working Calculation Result
Square side Perimeter
Area
Diagonal
sqs.PerimeterOfSquare()
sqs.AreaOfSquare()
sqs.DiagonalOfSquare()
float64
diagonal Perimeter
Area
Side
sqd.PerimeterOfSquare()
sqd.AreaOfSquare()
sqd.SideOfSquare()
float64
Rectangle length,breadth Perimeter
Area
Diagonal
rct.PerimeterOfRectangle()
rct.AreaOfRectangle()
rct.DiagonalOfRectangle()
float64
Parallelogram base,slant,height Perimeter
Area
plg.PerimeterOfParallelogram()
plg.AreaOfParallelogram()
float64
Trapezium base,top,height Area tph.AreaOfTrapezium() float64
base,top,slant1,slant2 Perimeter tps.PerimeterOfTrapezium() float64
Rhombus diagonal1,diagonal2 Area
Side length
Perimeter
rmd.AreaOfRhombus()
rmd.LengthOfRhombusSides()
rmd.PerimeterOfRhombus()
float64
side,height Perimeter
Area
rms.PerimeterOfRhombus()
rms.AreaOfRhombus
float64
Scalene Quadrilaterals side1,side2,side3,side4 Perimeter scq.PerimeterOfScaleneQuadrilateral() float64

N-Agon

Gogeom can handle any polygon with given their number of sides, length of sides and apothem of the shape.

Step to follow :

  • import shape "github.com/MindorksOpenSource/gogeom"
  • Initialize n-agon
//if polygon
n := shape.CountAndLengthAndApothemOfAgonSide {
	//side_count, side_length, side_apothem
	5,6,4.2,
}

//OR, if hexagon
n := shape.CountAndLengthAndApothemOfAgonSide {
	//side_count, side_length, side_apothem
	6,6,4.6,
}

Calculations for n-agon (polygons)

Input Working Calculations Result
side count,side length,apothem Perimeter
Area
n.PerimeterOfAgon()
n.AreaOfAgon()
float64

TODO

  • More features related to Geometrical Functions

If this library helps you in anyway, show your love ❤️ by putting a ⭐ on this project ✌️

Check out Mindorks awesome open source projects here

Contributor

Himanshu Singh
Nishchal Raj

License

   Copyright (C) 2018 MINDORKS NEXTGEN PRIVATE LIMITED

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.