/PolarCodesDNN

Primary LanguageJupyter Notebook

PolarCodesDNN

See related paper (ArXiv link soon available) for more details.

Using Deep Neural Networks to Predict and Improve Polar Codes Error Rates.

Generating datasets

git clone --recursive git@github.com:bonben/gad.git
mkdir gad/build
cd gad/build
cmake .. -G"Ninja" -DCMAKE_CXX_COMPILER="g++" -DCMAKE_BUILD_TYPE="Release" -DCMAKE_CXX_FLAGS="-funroll-loops -march=native"
ninja

The following command line allows for example to generate the datasets of (1024,512) codes.

./bin/gen_aff3ct_datasets --gad-seed "2" -s "3.2" -e "1000" --enc-fb-gen-method "GA" -K "128" -N "256" --src-type "RAND" --src-implem "FAST" --chn-type "AWGN" --chn-implem "FAST" --dec-type "SCL" --dec-simd "INTRA"  --dec-polar-nodes "{R0,R0L,R1,REP,REPL,SPC_4}" -L "4" -R "18" -S "18000" --gad-term

Refer to the CLI help (-h argument) for further options.

Datasets

Available in the nn_experiments folder as txt files, should be straightforward to use.

NN training and experiments

Simply run the notebook file in nn_experiments to reproduce results from the paper. Activate the option "run_simulations" to reproduce hyperparameter figures.