If you find our work or this repository useful, please consider giving a star ⭐ and citation.
@article{CD_HPE,
title={Towards Accurate Cross-Domain In-Bed Human Pose Estimation},
author={Mohamed Afham and Udith Haputhanthri and Jathurshan Pradeepkumar and Mithunjha Anandakumar and Ashwin De Silva and Chamira Edussooriya},
year={2021},
journal={arXiv preprint arXiv:2110.03578},
}
We follow the Leeds Sports Pose Dataset pose definition with 14 joints labeling, namely,
Right ankle Right knee Right hip Left hip Left knee Left ankle Right wrist Right elbow Right shoulder Left shoulder Left elbow Left wrist Neck Head top
The lable matrix joints_gt_<modality>.mat
has the format <x,y,if_occluded>
x n_joints x n_subjects
Create a folder named data/SLP_VIPCup.
mkdir data
mkdir data/SLP_VIPCup
Download dataset from codalab. Unzip the data inside data/SLP_VIPCup/ by running:
source download_data.sh
The directory should look like
CD_HPE/
data/
SLP_VIPCup/
train/
test1/
val/
Run the following to create the required .json
files for the dataset
cd filelists
source create_filelist.sh
cd ..
python train_supervised.py --adam --use_target_weight --model stacked_hg --print_freq 50 --batch_size 3 --wandb_run Name/of/wandb/run
python train_distillation.py --adam --best_path path/to/best/model --model stacked_hg --print_freq 50 --batch_size 4 --lr 1e-4 --wandb_run Name/of/wandb/run