/RSA_Algorithm

Simple implementation of RSA algorithm, asymmetric cryptography algorithm

Primary LanguagePython

RSA Algorithm

Simple implementation of RSA algorithm, asymmetric cryptography algorithm

The concept of RSA Algorithm is generating public and private keys in 512 bits.

Screenshot

The Algorithm theory:

1- Key Generation

• Choose two random prime numbers p & q using Miller-Rabin Test
• Compute n =p*q
• Compute euler phi = (p-1) (q-1)
• Choose e, random prime number in specific range
• Then get the key of (n,e)

2- Message Encryption using EEA (Extended Euclidean algorithm)

• C = m^e mod n

3- Message Decryption using CRT

• C^d mod n
• e^-1 mod phi

• Miller-Rabin Test

1- Get U & R from the prime number
2- Use Square and multiply algorithm to allow fast exponentiaition

• CRT

1- Modular representation of y into p and q

𝑦𝑝=𝑦 𝑚𝑜𝑑 𝑝 
𝑦𝑞=𝑦 𝑚𝑜𝑑 𝑞 

2- Compute exponents

𝑑𝑝=𝑑 𝑚𝑜𝑑 (𝑝−1) 
𝑑𝑞=𝑑 𝑚𝑜𝑑 (𝑞−1) 

3- Compute exponentiation

𝑥𝑝=𝑦𝑝𝑑𝑝 𝑚𝑜𝑑 𝑝
𝑥𝑞=𝑦𝑞𝑑𝑞 𝑚𝑜𝑑 𝑞

4- Compute C:

𝐶𝑝=𝑞−1 𝑚𝑜𝑑 𝑝 
𝐶𝑞=𝑝−1 𝑚𝑜𝑑 𝑞 

5- Compute X

𝑋 = {(𝑞.𝐶𝑝)𝑋𝑝 + (𝑝.𝐶𝑞) 𝑋𝑞} 𝑚𝑜𝑑 𝑛