/Reinforcement-Learning-solving-a-simple-4by4-Gridworld-using-Qlearning-in-python

solving a simple 4*4 Gridworld almost similar to openAI gym FrozenLake using Qlearning Temporal difference method Reinforcement Learning

Primary LanguageJupyter Notebook

Reinforcement_Learning_solving_a_simple_4_4_Gridworld_using_Qlearning

solving a simple 4*4 Gridworld almost similar to openAI gym FrozenLake using Qlearning Temporal difference method Reinforcement Learning

WRITTEN BY MOHAMMAD ASADOLAHI
Mohammad.E.Asadolahi@gmail.com
https://github.com/mohammadAsadolahi
!!!! its not Deep Q-learning implementation!!! for Deep Q-learning version search my github repo
4*4 gridworld this program is using Reinfrocement learning to solve a 4*4 gridworld like frozen lake enviroment in open ai gym
the method used is policy iteration whitch is one of fundamental manners of Dynamic Programing

 | S | O | O | O |  
 | O | O | O | * |  
 | O | * | O | O |  
 | O | * | O | T |  

S= start cell
O= normal cells
*= penalized cells
T= terminate cell

our agent goal is to find policy to go from S(start) cell to T(goal) cell with maximum reward(or minimum negative reward)
valid actions are storend in GridWorld actions array.
positive and negative rewards in each cell is stored in Gridworld "Rewards" dictionary and can be modified by user .the current rewards for *(hole) cells ant T(goal) cell has been set to:
self.rewards = {(3, 3): 5, (1, 3): -2, (2, 1): -2, (3, 1): -2}
for example reward to go in (3,3) in enviroment witch is the goal will be +5 so agent gets +5 reward whenever go to cell (3,3)
the size of Gridworld can be changed in GridWorld calss by adding space actions
Average Rewards Total Rewards


Algorithm Flow


first we initialize a random policy that indicate prefered moves in every cell:

| D |  | L |  | R |  | D | 
----------------------------
| U |  | U |  | R |  | D | 
----------------------------
| D |  | R |  | R |  | U | 
----------------------------
| U |  | L |  | R | 
----------------------------

U = going up
D = going down
L = going left
R = going right

and we initialize Q table like:

(0, 0): {'D': 0, 'R': 0},
(0, 1): {'L': 0, 'D': 0, 'R': 0},
(0, 2): {'L': 0, 'D': 0, 'R': 0},
(0, 3): {'L': 0, 'D': 0},
(1, 0): {'U': 0, 'D': 0, 'R': 0},
(1, 1): {'U': 0, 'L': 0, 'D': 0, 'R': 0},
(1, 2): {'U': 0, 'L': 0, 'D': 0, 'R': 0},
(1, 3): {'U': 0, 'L': 0, 'D': 0},
(2, 0): {'U': 0, 'D': 0, 'R': 0},
(2, 1): {'U': 0, 'L': 0, 'D': 0, 'R': 0},
(2, 2): {'U': 0, 'L': 0, 'D': 0, 'R': 0},
(2, 3): {'U': 0, 'L': 0, 'D': 0},
(3, 0): {'U': 0, 'R': 0},
(3, 1): {'U': 0, 'L': 0, 'R': 0},
(3, 2): {'U': 0, 'L': 0, 'R': 0}}

Output



step:0

 | R |  | L |  | L |  | L |   
----------------------------  
 | U |  | U |  | U |  | U |   
----------------------------  
 | D |  | U |  | U |  | U |   
----------------------------  
 | U |  | U |  | U |   
----------------------------  

step:200

 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | D |  | L |   
----------------------------  
 | U |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:400

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:600

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:800

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:1000

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:1200

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:1400

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:1600

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:1800

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  

step:1800

 | R |  | R |  | D |  | L |   
----------------------------  
 | R |  | R |  | D |  | L |   
----------------------------  
 | D |  | R |  | R |  | D |   
----------------------------  
 | U |  | R |  | R |   
----------------------------  
  
  
exploited:12482  explored:120