Mosand/Attack-and-Anomaly-Detection-in-IoT-Sensors-in-IoT-Sites-Using-Machine-Learning-Approaches
Attack and Anomaly detection in the Internet of Things (IoT) infrastructure is a rising concern in the domain of IoT. With the increased use of IoT infrastructure in every domain, threats and attacks in these infrastructures are also growing commensurately. Denial of Service, Data Type Probing, Malicious Control, Malicious Operation, Scan, Spying and Wrong Setup are such attacks and anomalies which can cause an IoT system failure. In this paper, performances of several machine learning models have been compared to predict attacks and anomalies on the IoT systems accurately. The machine learning (ML) algorithms that have been used here are Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN). The evaluation metrics used in the comparison of performance are accuracy, precision, recall, f1 score, and area under the Receiver Operating Characteristic Curve. The system obtained 99.4% test accuracy for Decision Tree, Random Forest, and ANN. Though these techniques have the same accuracy, other metrics prove that Random Forest performs comparatively better.
Jupyter NotebookMIT
No issues in this repository yet.