This directory contains the implementation of the easy_nlp pipeline applied to the field of crisis and psychology.
To use the pipeline, you have to install the package easy_nlp
$ git clone https://github.com/Moumeneb1/IRIT_INTERNSHIP.git
$ pip install IRIT_INTERNSHIP/
.
├── ...
├── Crisis
│ ├── Bert_Base.ipynb
│ ├── Flaubert_base.ipynb
│ ├── Camembert_base.ipynb
│ ├── Bert+features.ipynb
│ ├── Flaubert+Features.ipynb
│ ├── Flaubert_base_adapted.ipynb
│ ├── Bert_CrisisNLP.ipynb
│ ├── Flaubert_LSTM.ipynb
│ ├── Flaubert_CNN.ipynb
│ ├── Bert Multitask.ipynb
│ ├── Flaubert_Multitask.ipynb
| └── Flaubert_base+ Focal Loss.ipynb
├── Psycho
│ ├── Bert_Base.ipynb
│ ├── Flaubert_LSTM.ipynb
| └── Flaubert_Multitask.ipynb
└── ...
These results showcase some of the models used on the RANDOM-SAMPLING CONFIGURATION
Model | Binary | Three class | Multiclass |
---|---|---|---|
Bert_base | 0.824 | 0.742 | 0.586 |
Flaubert_base | 0.841 | 0.765 | 0.617 |
Camembert_base | 0.812 | 0.7427 | 0.5587 |
Flaubert+Features | 0.834 | 0.834 | 0.613 |
Flaubert_base_adapted | 0.853 | 0.767 | 0.654 |
Bert_CrisisNLP | 0.822 | 0.742 | 0.591 |
Flaubert_LSTM.ipynb | 0.848 | 0.7637 | 0.6713 |
Flaubert_CNN.ipynb | 0.8515 | 0.7656 | 0.6654 |
Flaubert_Multitask.ipynb | 0.847 | 0.769 | 0.625 |
Flaubert_base+ Focal Loss.ipynb | 0.853 | 0.7804 | 0.66 |
These results showcase the results of using these models on the psycho corpus
Model | Binary | Three class |
---|---|---|
Bert_base | 0.7096 | 0.5610 |
Flaubert_LSTM | 0.7836 | 0.6972 |
Flaubert_Multitask | 0.7607 | 0.6972 |
You can find the adapted Language models weights on these links :
- flaubert_base_cased_psycho
- bert_base_multilingual_cased_psycho
- flaubert_base_cased_crisis
- bert_base_multilingual_cased_crisis
Notice : Adapted models are adapted Language models weights that can be used with any combination, You can train them using the LM_Training_script from the pipeline and saved them on a folder that you can reference after, for instance if you wanna use the flaubert_base_cased_psycho.
- Download the LM
- Unzip the folder
- Reference the folder when creating instantiating your model
>>> from transformers import AutoModel
>>> from easy_nlp.models import BasicBertForClassification,
>>> base_model = AutoModel.from_pretrained(#Path too your Folder)
>>> model = BasicBertForClassification(base_model,n_class)